- Advertisement -
首頁 標籤 ADAS

ADAS

- Advertisment -

落實汽車天線罩測試 車用雷達干擾影響大減

可為駕駛提供幫助,並能夠提高道路安全性的高級駕駛輔助系統現在已整合到入門款車輛,成為汽車世界中的常見技術。全自動駕駛汽車(包括測試汽車)經常會成為新聞頭條,尤其是在自動駕駛車輛發生事故後。這些複雜系統在準備批量生產前還有很長的路要走,但可肯定其會於不久的將來成為現實。 汽車雷達感測易受干擾 能夠偵測附近物體的感測器是自動駕駛汽車的關鍵元件,這些包括攝影機和雷射雷達感測器,尤其是雷達感測器更為重要。現今每年生產數以百萬計的汽車雷達,為高階車輛中的標準裝置。汽車雷達感測器主要用於提高駕駛舒適性和預防事故,大多支援主動車距控制巡航的雷達感測器均在76GHz至77GHz頻率範圍(1GHz頻寬)內運作,用以感測遠處其他車輛和物體。汽車雷達要實現一些先進功能,特別是能夠感測附近物體的功能,如變道輔助和盲點偵測等,需要其於77GHz至81GHz頻率範圍內運作,以更大頻寬才能實現所需高解析度;且高達81GHz的擴展汽車頻段有助於減少無線電干擾。 由於汽車外觀比功能更重要,汽車雷達通常被雷達罩覆蓋,該雷達罩由對RF訊號透明的材料製成。汽車散熱器格柵上的標誌通常用於雷達罩用途,塑膠保險桿也是雷達良好藏身之處。過去標誌主要用於推廣品牌,而無其他重要作用,但現可作為雷達天線罩,因而更像RF零組件。若於設計中不考量此點,則可能對標誌後的雷達探測性能及準確性產生不利影響。 尤其是具有局部材料厚度變化的三維形狀品牌標誌可能會導致在毫米波段運作時導致出現RF性能問題。保險桿通常塗有金屬漆,可減弱高頻訊號。因此為確保雷達可靠性,必須驗證天線罩的材料屬性並檢查其對雷達訊號的影響。對自動駕駛而言,汽車感測器的不確定性和風險皆無法接受,基於以上產生的錯誤皆無法透過後續處理而充分糾正。因此車輛製造商及其供應商需要全新量測功能,以便評估天線罩雷達一致性。 雷達偵測精準度受多方影響 汽車雷達感測器主要使用頻率調變連續波(FMCW)訊號。由於傳播延遲和都卜勒(Doppler)頻移,這些感測器可量測並解析多個目標的距離及徑向速度。根據天線陣列特性,還可量測和解析方位角甚至至仰角。在偵測及追蹤後,感測器電子裝置處理訊號以生成目標參數清單,其中包含物件量測位置、速度以及類型訊息(行人及汽車等)。此清單將被發送至車輛電子控制單元,用於即時決策車輛操控。因此該資料的準確性和可靠性對車輛及乘客安全極為重要。 雷達精度取決於多因素,如硬體零元件、軟體處理和雷達回波本身。具有低訊噪比(SNR)的訊號回波參數無法像高SNR訊號一樣精確量測。此外,諸如多路徑傳播和天線罩等引起的失真也大幅影響量測精度;方位角量測誤差會導致目標看起來與實際位置有偏差,如圖1所示。雷達感測器角度量測誤差僅為1O,將導致100m外的目標看上去橫向偏移1.75m,以致被誤認處於不同車道。為確保可靠運作,在此距離下角度量測誤差須遠小於1O。 圖1 由於方位角量測錯誤,未正確檢測到目標位置,自動駕駛車輛控制器可能會做出致命動作。 天線罩選用決定雷達偵測精度 圖2顯示基於實際汽車零組件量測結果得出的方位角偏差影響,其中商用汽車雷達與靜止目標距離為12.4m,角度為11.5O,該圖顯示不同天線罩如何影響雷達的橫截面和入射角。以A區顯示值(無天線罩)也在此提供用於比較;可以看出當使用合適天線罩(B區)時,對入射角的估算無影響,但雷達橫截面會以兩種方式減小(在此狀況下約為2dB);若使用不合適的天線罩(C區),相對於比較量測值,平均雷達橫截面下降約4dB,使其難以偵測弱反射目標。不合適天線罩對偵測入射角的影響亦明顯。在恆定11.5O時無法看見,但在11.5O和11.7O間交替變化時則可顯示,因此訊號處理電子裝置不會獲得明確值。使用該天線罩,汽車雷達無法達到0.1O的目標精度。 圖2 不同天線罩對雷達橫截面(RCS)和入射角影響,不相容天線罩會導致角度誤差。 多因素考量輔助雷達校正 現代雷達感測器在接收器前端通常具有天線陣列,透過量測由相控陣天線波束成形獲得的相位和振幅比確定方位角(有時還可確定仰角)。為獲得最佳方位角精度,必須單獨校正每個雷達感測器。以下是雷達校正的典型程式:首先將感測器安裝在消聲室內轉盤上,遠場中已知距離的角反射器通常作為參考目標;量測雷達方向圖並將其儲存於感測器記憶體(Memory)中,再由偵測演算法使用,於訊號處理過程中校正演算,並於運作期間完成。 車輛製造商通常在標誌或保險桿後方將校準的雷達感測器整合至車輛。由於訊號必須在到達目標和從目標返回過程中兩次穿過天線罩材料,因此天線罩材料對於RF傳輸訊號的減弱出現兩次。從以下分析可看出其減小雷達偵測範圍。 根據訊號傳播定律,訊號傳輸後功率與距離r的平方成反比,代表在訊號往返過程中,其功率將減小因數1/r4。對於具有3W輸出功率、25dBi天線增益、雷達目標橫截面為10m,而訊號偵測臨界值為-90dBm的77GHz雷達使用此等式,配置最大範圍為109.4m。若天線罩雙向減弱為3dB,則同一雷達最大距離將減少16%,僅為92.1m。 但材料減弱並非減低雷達性能的唯一因素,天線罩材料的反射率和均勻性也很重要。例如塗漆中金屬顆粒的反射以及基礎材料的射頻失配會在天線罩內(即靠近感測器位置)產生干擾訊號,後者於接收器鏈路中被接收和下變頻,進而降低雷達偵測靈敏度。許多汽車製造商試圖透過傾斜天線罩減輕此影響,使發射的雷達訊號反射至其他處,而非直接回到接收器前端。但此種解決方案會受設計限制,且無法消除導致RF能量損失的寄生反射。 另一個問題則是,天線罩中夾雜物和密度變化等導致材料不均勻,會干擾出射和入射波前,因而可能失真,並降低角度量測準確度。雷達感測器校準無法補償此種影響,因為即便雷達校準後也可能安裝在不同製造商的天線罩後面。 傳統黃金裝置偵測死角易現 天線罩製造商通常使用參考雷達(黃金裝置)測試其產品。對於這種測試,將角反射器以事先預定距離和方位角安裝在雷達前面(圖3),分別在有和無天線罩的情形進行差動量測再加以比較。若雷達測定距離和方位角以及回波訊號在指定範圍內,天線罩測試始合格。但此方法僅檢查特定方位角,易錯過天線罩中有問題的區域。另一種量測方法以類似方式操作,但僅需一個反射器—將雷達感測器和天線罩安裝至轉盤,以不同角度重複量測,可從轉盤讀取實際角度(地面真實狀況)並與雷達測得角度比較。該方法與轉盤定位精度一樣精確,但因測試需長時間故不適用於生產線測試。 圖3 使用黃金裝置的典型測試設置。 天線罩測試儀克服傳統限制 有方案能克服傳統方法的局限,像是羅德史瓦茲(R&S)QAR汽車天線罩測試儀(圖4)使用具數百個發射及接收天線的大型面板代替具微小天線陣列的黃金裝置,這些天線在75GHz至82GHz的擴展汽車雷達頻率範圍運作,使汽車雷達綜合數百個天線資料;由於具大孔徑,可憑藉更高解析度(mm範圍內)量測距離、方位角和仰角,使量測結果(即反射率)顯示為X射線影像,即便測試及量測經驗受限者也可立即進行品質評估。與使用真實雷達量測不同,此方法毋需費時量測順序以確定天線罩特性,只需一次時程即可獲得結果,類似使用攝影機拍照。 圖4 R&S QAR汽車天線罩測試儀。DUT安裝在操作台前邊緣,桌台上的藍色裝置包含用於傳輸量測的可選mm波發射器。 被測天線罩放置於面板前的指定區域,可進行兩種量測,一種用於確定被測裝置(DUT)反射率,另一種用於確定透射率。 首先進行反射率量測以確定天線罩材料反射多少能量,此能量無法透過天線罩。如上所述,反射訊號會降低性能,甚至損害正確運作。由於各種原因,某些區域可能具有較高反射率,如材料缺陷、空氣夾雜物、不同材料層間的有害相互作用或某些材料組分過多等。透過根據幅度和相位連貫使所有反射訊號連接,該量測方法提供空間分辨量測結果,而視覺化結果能直觀、定量評估DUT反射特性。 圖5 反射率(左)和單向衰減(右)的高解析度mm波影像。標誌中的白色輪廓表示測試發射器或雷達輻射橫截面,該區域用於評估。 圖5中高解析度雷達影像顯示演示用天線罩(圖6)覆蓋下雷達感測器看到的影像,亮度水準代表反射率、區域越亮、反射雷達訊號越多;金屬物體(四角螺釘)顯示為白色,標誌清晰可見的輪廓顯示局部高反射率和非常不均勻的整體影像;標誌區域中較大的0.5mm厚度足以大幅降低雷達性能。 圖6 演示天線罩,僅在天線罩主體表面上方突出0.5mm,即便厚度微小增加也會導致在77GHz時失配。 此示例中天線罩中間部分平均反射率為-11.0dB,標準差為-18.2dB,在許多使用場景中此值過高,無法確保雷達可靠操作。實際上預期反射率取決於雷達單元靈敏度和欲覆蓋的最大偵測範圍。 接下來量測天線罩材料的頻率匹配及衰減。位於DUT後的發射器在選定頻率跨度掃描,可精確評估天線罩的發射頻率回應,回應可提供有關DUT用於雷達操作確切頻段上RF匹配的詳盡訊息,其與雷達使用的實際訊號波形無關,因此對可安裝在天線罩後的雷達均有效。圖6右側圖則顯示演示天線罩的量測結果,由於76GHz至79GHz之間的高波紋度,該天線罩不適用於在該頻段操作的雷達。 若使用汽車行業真實3D天線罩的傳輸量,可測得圖7中類似鋸齒狀的曲線,該天線罩會遇到各種性能問題: 頻率匹配位於不太有利的71GHz左右而非於76GHz,是因某些天線罩層厚度增加所致;79GHz頻帶中不穩定的減弱變化表明駐波比顯著增加,表示天線罩邊界處反射及強烈干擾效應;總體單向(One-way)衰減相對較高,將導致偵測範圍顯著減小。 圖7 在一個複雜3D設計商用多層天線罩上進行的透射率量測。 準確感測實現安全自駕 自動駕駛需可靠雷達正確無誤偵測周圍區域物體,可行性取決於雷達品質及其安裝狀況。雷達安裝在品牌標誌或保險桿後,車身部件(天線罩)會減弱訊號,以致無法偵測物體或於錯誤位置偵測到。當下此類部件不僅需滿足其原始目的,且須具備特定RF特性,並以準確實用的量測方法驗證。相較黃金裝置,此測試儀能更快、更易評估汽車天線罩品質,不僅量測DUT的RF透射率,進而帶出天線罩設計的基本適用性,並量測反射率而視覺化為X射線影像,亦可讓非專業人員進行可靠合格/失效評估,對於生產線終端測試尤為重要。 (本文作者皆任職於羅德史瓦茲)
0

晶片商新品/布局策略再現 CES 2020自駕風潮持續延燒

日前CES 2020落幕,本次展覽亮點仍聚焦於自駕技術發展,晶片大廠趁勢展示最新技術及合作策略,如高通(Qualcomm)發布汽車運算晶片以開拓自駕市場,以及英特爾子公司Mobileye宣布與兩大國際城市達成協定,拓展其ADAS市場藍圖。 資策會MIC副所長洪春暉表示,汽車產業仍為本次展會最受矚目的焦點,汽車產業演進趨勢之一即為自駕化。而晶片大廠高通為火力集中於自駕化的例子,在本次展會針對自駕車市場推出運算晶片,為一大亮點。 高通推首款汽車運算平台 降低自駕系統功耗 高通於展期間首度推出汽車運算晶片—Snapdragon Ride平台,進一步開拓自駕車市場。 平台內包括Snapdragon Ride Safety系統單晶片(SoC)、安全加速器(Snapdragon Ride Safety Accelerator)及自動疊層(Snapdragon Ride Autonomous Stack)(圖1)。 圖1 高通推新汽車平台整合自動駕駛疊層及安全加速器 高通技術公司產品管理高級副總裁Nakul Duggal表示,這些解決方案可在功率受限的環境於各類型的汽車上運作。 該平台具有高度可擴展性、開放性、可訂製且具高度功耗優化的自動駕駛解決方案,滿足從新車評價計畫(NCAP)至L2+高速公路自動駕駛到自駕計程車的系列需求。 此平台結合Snapdragon Ride自動疊層、汽車製造商或一級供應商的運算法,加速於大眾汽車市場部署高性能自動駕駛。 新平台旨在透過高效能硬體及人工智慧技術,以及開創性的自動駕駛疊層,解決自動駕駛和先進駕駛輔助系統(ADAS)的複雜性,提供全面、高成本效益和高能源效率的系統解決方案;其系統單晶片、加速器和自動駕駛疊層組合支援自動駕駛系統的三個產業領域—用於車輛的L1/L2主動安全先進駕駛輔助系統、L2+便利型先進駕駛輔助系統,以及L4/L5全自動駕駛。 據悉,Snapdragon Ride平台搭載可擴展和模組化的異構高性能多核CPU、高能效人工智慧和電腦視覺引擎與GPU,可根據各市場區隔需要使用,提供良好的熱效率,從用於L1/L2應用的每秒30兆次(TOPS)運算表現,至L4/L5駕駛所需的130W以上700兆次(TOPS)運算表現。 此外,新自動駕駛軟體疊層已整合至新平台,加速汽車OEM和一級供應商開發和創新,且該軟體疊層可為複雜使用案例提供優化的軟體和應用程式,協助提升日常駕駛安全性與舒適度。 高通整合式車用平台提升該公司在車聯網、車載資訊娛樂系統及車內互聯領域的地位,訂單總值超過70億美元;新晶片預計於2020年上半年可提供汽車製造商和一級供應商預開發,同時搭載該晶片的車輛將於2023年量產。 Mobileye放眼自駕前景首攻中國市場 至於英特爾子公司Mobileye則進一步擴大先進駕駛輔助系統(Advanced Driver-Assistance System, ADAS)及自動駕駛移動即服務(Mobility-as-a-Service, MaaS)的全球版圖,於CES 2020期間宣布分別與上海汽車集團(上汽集團)及韓國大邱廣域市合作。 Mobileye首度攻入中國市場,偕上海上汽於中國布建L2+系統,使用Mobileye道路體驗管理(Road Experience Management, REM)技術及全球雲端地圖資料庫RoadBook,匯集中國道路資訊,製作高清晰度地圖以供L2+和更高自動駕駛層級車輛使用,推動中國L2+級ADAS系統布建,並提供其他OEM合作車廠進入中國地圖測繪市場的機會。 另一方面,該公司則聯手韓國大邱廣域市推動自駕MaaS布建,結合自動駕駛計程車(Robotaxis)移動服務協定,預計連同大邱廣域市(直轄市)測試、部署自動駕駛計程車移動解決方案,將自駕系統整合至車輛中,實現無人駕駛MaaS操作。 該公司於全球亦有多方合作案例,如與巴黎大眾運輸公司(RATP)聯合巴黎市政府將自動駕駛計程車(Robotaxis)導入法國市場;與中國蔚來汽車(NIO)合作生產該公司自駕系統,並銷售搭載該系統的消費者層級自駕車;聯手福斯汽車(Volkswagen)及Champion Motors的合資事業在以色列經營自動駕駛計程車隊等。 本次的兩項合作反映Mobileye針對車用市場的投入策略,包括地圖道路體驗管理、先進駕駛輔助系統、自動駕駛移動即服務和消費者自動駕駛車輛(Autonomous Vehicle,...
0

遵循設計訣竅 汽車RF設計挑戰迎刃解

無線汽車設計複雜度與日俱增 過去單純的交通運輸模式,已經轉變為具有複雜電腦系統的車輛,能夠讓車輛本身及我們與周遭世界連結在一起。現在車輛不但能夠自動駕駛、透過網路通訊,還可提供娛樂功能,而分析師預測,上述趨勢只會繼續成長。 根據McKinsey & Company的資料顯示,未來幾年內聯網車輛的數量每年將增加30%;於2020年前,有1/5的車輛能連上網際網路。 Strategy Analytics預測車輛處理及先進駕駛輔助系統(ADAS)RF前端(RFFE)市場,將以17%的年複合成長率(2017~2022)成為最大市場。所以汽車RF工程師要如何設計聯網車輛?首先探討的是如何克服一些汽車設計中最大的RF挑戰。 現今車輛配備許多電子裝置與世界連線。對RF系統而言,代表出現大量RFFE鏈,因車輛製造商在汽車設置更多的電信設備。圖1為一般系統範例。 圖1 汽車RF系統示意圖 汽車RF生態系統的變化,對RF系統設計人員造成以下幾項挑戰: .整合眾多標準至車輛之中,有時需要整合為單一模組。 .因應共存疑慮,因為上述許多標準彼此之間非常接近。 .盡可能減少電子元件散發的熱能。 .因應更高的耗電量疑慮,因為所有車輛設備都使用相同的電瓶電源。 .確保產品元件具備長期可靠度。 以上挑戰不僅只存在於汽車業,而克服挑戰的策略則與其他應用類似,例如 Wi-Fi連線及行動裝置。 以下提出部分基本設計訣竅,以選擇適合汽車的RF元件: .使用高度線性的主動或前端裝置。 .使用的元件要能在RFFE盡量降低插入損耗,並降低整體RF鏈路預算。 .留意RFFE效率、電流消耗及功率消耗等問題。 .使用高效能RF濾波器盡量減少插入損耗、溫度漂移及干擾。 .考慮使用能在單一封裝整合發射、接收及濾波功能的元件。 .使用符合汽車規範且遵循IATF及IEC業界標準的產品。 接下來將更深入探討各項設計考量因素,範圍涵蓋RF共存、整合、天線設計、熱管理、電瓶續航力及車輛可靠度。 設計無線汽車 RF共存問題待解決 串流影片使用者期望在車內享有快速可靠的服務,由網路及車內串流正迅速成為標準需求。因此重要的是盡可能減少共存問題,並在維持串流服務時降低線路損耗。不過在無線頻段及標準之間達到最大程度的共存非常困難。如果沒有使用適當的濾波功能,就會增加以下頻率發生共存問題的機率。 2.4GHz:Wi-Fi及行動通訊,例如LTE頻段41;Wi-Fi及藍牙;SDARS(衛星數位音訊無線電服務)及LTE。5GHz:Wi-Fi及V2X(802.11p及C-V2X);V2X及U-NII(非正式國家資訊基礎建設)頻段,尤其是U-NII-3。在2.4GHz(圖2)及5GHz(圖3)頻譜圖之中,顯示聯網汽車使用的無線技術頻寬有多麼擁擠。所以減輕以上共存問題的最佳方式為何?部分最佳實務包括在設計中使用高效能RF濾波器,以及高度線性的主動裝置。 圖2 2.4GHz頻譜圖 圖3 5GHz頻譜圖 .濾波器可減少無線電訊號之間的頻外干擾。 .共存濾波器可針對發射訊號減輕可能的減敏作用。 現今車輛通訊可在天線與收發器之間支援許多發射及接收路徑,而隔離這些路徑需要使用濾波器。這類濾波器必須由共存頻帶提供隔離、具備低插入損耗,盡可能降低發射耗電量;以及最佳化接收器靈敏度。 整合為RF設計要素 行動電話產業已由獨立元件轉為高度整合的系統模組。由於汽車在相同的整體車輛體積之中納入更多連線功能,汽車製造商也必須進行相同的轉移程序。 將更多功能整合至前端模組(FEM)或濾波器模組,有助於簡化RF設計(圖4)。 圖4 更多功能整合至前端模組或濾波器模組,有利降低RF設計複雜度。 這有什麼好處?整合適當的濾波器技術,可在本質上協助處置前述的共存問題,以及熱能挑戰。 車輛工程師過去只需要擔心GPS及藍牙,但現在設計時必須遵循C-V2X等新的無線標準,未來則需要因應5G新無線電(NR)規範。設計人員必須瞭解圖5顯示的所有技術,同時將其納入汽車設計之中。其中最可能的方式,就是將行動電話技術當作跳板。為此,Qorvo工程師打造RF Fusion協助客戶利用整合式解決方案,可有效降低設計複雜度,加速上市時間。許多這類複雜模組都包括嵌入式濾波器,可進一步降低RF複雜度及整體鏈路預算。 圖5 車輛工程師現必須了解更多新的無線技術並納入汽車設計中。 RFFE靠近天線有助提升訊號 請想像一具鯊魚鰭天線連接至纜線,而纜線則連往汽車其他位置的低雜訊放大器(LNA,通常位於儀表板)。使用纜線連接是傳統車輛製造普遍的實務作法,不過長距離的纜線連接,可能在天線與RFFE之間造成插入損耗(增加鏈路預算)。這種作法也會在LNA輸入增加雜訊指數(NF),尤其是行動通訊及Wi-Fi環境,並會降低訊號及接收器靈敏度。如果天線能夠接收更低的功率位準,就代表靈敏度提升。 對抗這項問題的方式之一,就是讓車頂鯊魚鰭內部的天線及RFFE元件盡可能靠近訊號輸入,並位在任何纜線之前。將RFFE整合靠近天線,就可以盡量減少 NF及提升訊號效能,而降低NF也有助於接收器靈敏度(圖6)。 圖6 降低NF有助提升接收器靈敏度。 同樣方法也可用於加強天線的發射功能。減少纜線連接,並將功率放大器(PA) 設置在最靠近天線的位置,將有助於降低插入損耗及耗電量。如果發射側在傳送訊號之前需要更多功率,也可以在鯊魚鰭使用補償器放大訊號,補償纜線長度造成的損耗及鏈路預算。 克服熱能挑戰需留意三大關鍵參數 溫度是車輛主要關鍵設計挑戰之一,包含車內及外部環境,當車輛溫度升高,將會影響系統層級的RF調校及效能。所有無線連線及電子裝置在同樣狹小的車輛體積中持續運作,因此會在受限區域內增加輻射熱。 熱能也會影響可靠度,可能危害汽車的各項安全功能。嘗試減輕熱能問題時,需要留意以下關鍵參數,分別為RFFE效率、電流消耗與功率消耗。 設計人員可使用的部分散熱方法為傳導及對流冷卻,不過僅限於車內使用。產品的精巧外型則讓熱能挑戰更加複雜。以下技巧可協助處置與熱有關的RF問題: 1.使用元件製造商提供的PC板布局檔案及評估板。最理想的作法就是要求及使用製造商設計,因為其布局在散熱及熱效率方面經過最佳化處理。 2.使用最低或沒有溫度偏移的RF濾波器。對汽車系統而言,必須使用具備出色溫度穩定度、低插入損耗及高品質因數的溫度補償濾波器(例如Qorvo的BAW技術),協助對抗各項熱(及共存)相關問題。BAW技術的溫度穩定度平均比SAW高出50%。 3.使用高度線性的前端產品。使用高度線性的前端產品可維持PA效率,有助於最佳化系統效率並減少產生熱能。請務必讓RFFE的插入損耗維持在最低程度,尤其是在高溫運作時。RFFE效能不彰會影響整個汽車系統的電流消耗,加重系統處理器的工作負擔,進而產生熱能、系統退化及消耗車輛電瓶等問題。 三大方法延長電瓶續航力 2017年的J.D. Power車輛可靠度研究(J.D. Power Vehicle Dependability Study)指出,電瓶故障首次名列車主面對的前十大問題。其中的調查結果顯示,在無關一般磨耗的部分,電瓶是最常更換的元件,三年車齡的車輛中有6.1%更換電瓶,比2016年增加了1.3%。這項研究認為,眾多新型複雜的車載電子系統(例如車用資訊娛樂系統、智慧型手機連線、語音辨識及免鑰匙系統)所增加的電流消耗,拖累了電瓶續航力。解鎖及啟動車輛的遙控鑰匙(Key Fob)就是其中一個例子。車主為了便利使用這項技術,卻可能耗盡汽車電瓶。如果遙控鑰匙放在車輛附近或內部,發射器及接收器就會持續通訊,對車輛進行回音檢查。測試顯示如果將遙控鑰匙放在車輛附近,電瓶電量耗盡的速度會比放在車外更快。隨著各種新型的無線及有線技術進軍汽車領域,請務必採取下列作法延長電瓶續航力: .使用低耗電量的目標裝置解決方案。 .瞭解閒置及運作期間的RFFE耗電量。 .使用最低或沒有溫度偏移的濾波器。 通過認證確保RF可靠度及長期效能 對RF半導體供應商而言,汽車電子裝置部門提供穩固的營收成長前景。像是ADAS、電動車、人機介面(HMI)及連網車用資訊娛樂系統等應用的創新成果,正帶動半導體領域提供更豐富的產品,而汽車工程師必須讓RF及其他子系統緊密地配合運作。這類半導體產品也用於因應汽車業嚴格的可靠度要求。使用商用零件取代符合汽車規範的專屬產品,或許是很吸引人的作法。不過選擇專為汽車應用設計,並且通過IATF及IEC認證測試的產品,可協助確保RF系統能夠長期運作。 總而言之,汽車製造商以破紀錄的飛快速度演進發展,因應消費者在外行動的無線連線需求,並打造更能自主操作的汽車。在這項演進發展過程中,車輛內外的RF技術將更為重要。汽車製造商使用高度整合的RF元件,並以創新的智慧型手機技術為跳板,就可享有優勢開發未來的連網自駕車。 (本文由Qorvo提供)
0

NXP新汽車網路處理器發揮車輛數據潛力

恩智浦(NXP)日前宣布推出全新S32G汽車網路處理器。這款處理器是車輛架構設計與實現的重要轉捩點。作為恩智浦S32處理器系列中的最新產品,S32G處理器可幫助汽車產業轉向高效能、以網域為基礎的車輛架構,並降低軟體複雜性,提高加密安全與行車安全。目前這款S32G已被主要OEM採用, 並在服務導向閘道器中發揮重要作用,幫助OEM從汽車製造商轉變為車輛數據驅動型服務供應商,藉此拓展商機。 奧迪自動駕駛ECU開發總監Bernhard Augustin表示,該公司認為S32G處理器所具備的網路通訊、效能與功能安全的組合非常適合下一代ADAS網域控制器。 在數據驅動的新型車輛服務中,未來新一代互聯汽車需要大幅提高效能與通訊安全。S32G處理器安全地管理車輛數據的傳輸,並保護關鍵應用免遭惡意利用,從而將汽車網路安全提升至全新水準。S32G首次將傳統MCU與具備ASIL D功能安全的高效能MPU結合在一顆晶片上,同時整合了網路加速器,相較之前的單一功能晶片,效能得到顯著提升。 隨著車輛朝互聯化、自動化與電子化的方向不斷發展,將會湧現大量基於數據的服務。在恩智浦的安全可靠處理技術的支援下,OEM已經開始研究新的商業模式,如基於車輛使用情況的保險、車輛健康監控與車隊管理服務。此外,S32G並不只是網路處理器。獨特的功能組合使其能夠支援最新的ADAS應用,並提供安全可靠的通訊功能,顯著提升車輛網路的整體整合度。
0

羅德史瓦茲成立車用乙太網路量測實驗室

隨著高功率資訊娛樂系統如導航、免持設備、行動網路等功能普及化,汽車內建的發射器和接收器數量愈來愈多;加上近年來先進駕駛輔助系統(ADAS)蔚成主流趨勢,國際各家汽車大廠已陸續在新車款中導入ADAS系統,如自動煞車、車道偏移導正、胎壓偵測、盲點偵測等功能已逐漸成為標準配備功能,對車載網路頻寬的要求也隨之提升。 車用乙太網可支援高速傳輸,透過連接汽車電子匯流排系統實現快速、高性價比資料通訊,可大幅降低生產成本並縮短上市時間。此外,車用乙太網可連結各種汽車電子系統,因此也被視為未來車聯網應用的主力。 因應汽車電子的應用需求增加,羅德史瓦茲(R&S)提供完整的解決方案包括CAN、CAN-FD、LIN、FlexRay、CXPI和SENT等車載通訊協定觸發及解調、EMI測試解調以及車用乙太網路一致性測試;此外,台灣羅德史瓦茲更進一步成立車用乙太網路量測實驗室,協助顧客進行先期的一致性測試認證。 汽車產業協會開放聯盟(Open Alliance)為乙太網路介面測試訂定詳細規格並發布綜合性測試計劃,其目的在於驗證多款車用乙太網電控單元標準及協定。台灣羅德史瓦茲的車用乙太網一致性測試解決方案,符合OPEN Alliance TC8 PMA test suites一致性測試規範,包括10BASE-T1S、100BASE-T1(P802.3bw)和1000BASE-T1(802.3bp)。在實體層的相容性測試中,使用R&S示波器和網路分析儀執行標準定義的測試,如量測車用乙太網介面電氣特性及評估資料通訊的可靠性。
0

邁向Level 3+自動駕駛 電源/雷達/感知設計更精進

目前市面上搭載先進駕駛輔助系統(ADAS)的車款,多處於Level 1、Level 2的階段,例如道路偏移警示系統(LDWS)、盲點偵測等功能是屬於Level 1,而ACC自動巡航系統和自動煞車等應用則歸類於Level 2。然而,在強化行車安全以及提升消費者體驗的驅動之下,全球車廠與Tier 1車電相關業者,無不勠力邁向Level 3以上的自駕等級,而ADAS功能的突破、升級,將是促成此一發展目標實現的重要關鍵;為此,產官學各界紛紛朝汽車電源架構、雷達、感知系統等方面著手,以提升ADAS性能,並早日實現Level 3以上的自駕車 汽車元件日益增加 電源設計須更注意 茂宣企業應用工程經理陳俞阡(圖1)表示,汽車電子系統設計十分複雜,特別是自動駕駛車輛(或是ADAS的車輛),因當中結合了許多數位和類比元件。像是自動駕駛除了要搭載中央運算平台,在平台之外還須連接許多閘道器(Gateway),並搭配許多感測器,如雷達、影像感測器、光達等;同時,還有著許多連網元件以實現車聯網。因有著這麼多樣功能和元件,使得現今的自動駕駛車輛產生大功率需求,且必須強化EMI防護,避免元件間相互干擾,影響到中央運算系統、閘道器等對資料收集的精確度和分析判斷。 圖1 茂宣企業應用工程經理陳俞阡表示,汽車電子系統結合了許多數位和類比元件,因此EMI防護十分重要。 為此,ADI備有Silent Switcher 2 LT8640S、LT8643S和LT8650S同步降壓穩壓器,具備可將EMI輻射降到最低的Analog Devices第二代Silent Switcher架構,並使用旁路電容器、接地平面、銅柱和其他可將所有快速電流迴路最佳化的元件組合,可在高切換頻率下高效運作。42V/6A穩壓器的靜態電流為2.5µA,1MHz下的效率高達96%,可以提供快速、乾淨且低過充的切換邊,即使是在高切換頻率下亦能夠實現高效運作和高降壓率。 陳俞阡進一步指出,隨著節能減碳意識興起,電動車和油電混合車也持續成長,使得自動駕駛的電動車和油電混合車在電源設計上,除了有著上述的挑戰之外,另一個挑戰便是目前許多車款都採用48V/12V汽車雙電池系統。 換言之,目前採用48V/12V汽車雙電池系統的電動車或油電混合車,車上既有12V的電池,同時也有48V的電池,所以在進行設計時,必須考量到能量要能夠從48V傳輸到12V,反之亦然;而若電池放電,則需要雙向電力傳輸來為電池充電,使得控制器必須能夠非常精確地控制充電電流,避免損壞電池。 基於此一需求,ADI也擁有多相位同步降壓或升壓控制器LTC3871,可在12V和48V電路板網路之間,提供了雙向DC-DC控制和電池充電。其可操作於降壓模式(從48V匯流排至12V匯流排)或升壓模式(從12V至48V)。任一模式可利用一個施加的控制訊號按需求配置。且其多達12個相位,可並聯和異相定時,以將高電流應用(高達250A)的輸入和輸出濾波要求降至最低。 打造自駕車輛 雷達/聯網是關鍵 是德科技應用工程部資深專案經理蘇千翔(圖2)表示,自動駕駛發展一直以來都備受矚目且有著龐大的商機,目前有95%的意外事故都是人為造成,而汽車產業之所以會如此積極推動自駕發展,最主要的原因便在於希望透過自駕車,大幅降低交通意外事故。 圖2 是德科技應用工程部資深專案經理蘇千翔指出,自動駕駛車輛其中一項關鍵元件是車用雷達。 而要打造自動駕駛車輛,其中一項關鍵元件便是車用雷達,有了車用雷達(及其他感測器),自駕車才能夠全面掌握周遭環境。蘇千翔指出,目前雷達主要是進行障礙物檢測或是盲點檢測,其代表著車子的感知能力,透過雷達獲取周遭環境資料後再送到中央系統進行分析、判讀。也因此,車用雷達的性能、精確度以及可靠性對自駕車而言至關重要。 因此,是德科技推出新的增強型Keysight E8740A汽車雷達訊號分析與產生解決方案。此一方案基於高效能實體層儀器,可為每個待測雷達設計提供同級中最有效的射頻(RF)和毫米波效能驗證,並具備易於使用的直覺式操作介面,能以更高效率進行測試,且還可產生各種真實條件,以解決任何潛在的汽車雷達干擾問題。 簡而言之,ADAS和自動駕駛汽車發展愈來愈迅速,而實現自動駕駛車輛需倚賴大量的感測器,有鑑於此,是德科技將持續投入資源,以實現全面協助開發人員克服雷達設計和效能驗證挑戰的目標。 另一方面,車聯網也是自動駕駛另一重點發展方向,蘇千翔表示,V2X通訊是一種汽車通訊系統,可將來自感應器和其他來源的資訊,透過高頻寬、低延遲、高可靠度的鏈路進行傳播,有助於推動完全自動駕駛的未來發展。C-V2X透過蜂巢式網路與雲端服務(如導航和車載資訊娛樂系統)進行通訊,並且透過直接連接將汽車與所有裝置相連,包括裝置(V2V)、行人(V2P)、基礎設施(V2I),以及網路(V2N)互連。 不過,目前C-V2X面臨的最大挑戰之一是跟上最新標準,該標準要求測試解決方案必須與C-V2X要求的最新發展保持同步,包括未來的5G NR版本。因此,是德科技推出新的蜂巢式V2X(Cellular Vehicle-to-everything)和先進的車載乙太網路解決方案,以因應不斷演進的產業標準並確保元件之間的互通性。 此一工具套件能夠在射頻、協定和應用層測試方面,跟上不斷演進的C-V2X標準解決方案,其5G NR V2X平台基於3GPP第16版標準,可因應未來規範並保護投資,加速新技術的部署,進而實現先進的安全功能。 自駕車輛要上路 實際模擬不可少 為了降低肇事率,確保駕駛安全(特別是未來人口老化越來越明顯),自駕車發展勢在必行。自動駕駛車輛的核心技術包括感知/定位、決策規劃、車輛動態控制等,除了這些技術之外,還有一項不容忽視的要素便是整車測試驗證。 車輛研究測試中心(ARTC)研發處經理許文賢(圖3)說明,自動駕駛實車上路之前,一定要進行所謂的模擬驗證,以確保安全性。因為某些突發狀況在真實道路上較難測試,譬如說行人不會三不五時的突然竄出衝到馬路上;因此,自駕車實車上路前勢必要先進行各種情況的模擬驗證,以確保車輛上路後能夠因應各種突發狀況。 圖3 車輛研究測試中心(ARTC)研發處經理許文賢說明,模擬驗證是自駕車上路前不可缺少的步驟。 據悉,自駕層級提升所面臨的測試問題包括:符合不同標準的測試環境(NHTSA、ISO、Euro NCAP等)、如何確保產品基本性能、測試數據的代表性、更嚴謹的測試方法、如何產生更多樣/貼近實務的測試情境、測試數據是否足夠、如何加快測試時程、如何驗證感測資訊的準確度,以及系統的強健性(Faultinjection)等。 因應這些測試需求,車輛中心有著SAE Level 0~5駕駛模擬驗證方案,包括Model In The Loop(MiL)、Software...
0

落實行進安全 自駕通訊/定位技術缺一不可

目前科技業者與車廠都已投入自駕車系統的發展,特別是專注於通訊、光學雷達(LiDAR)感測、定位與操控技術的研發,在自身的產業特色下,兩方發展出現速度和方向不大相同的現象。 科技產業在產品研發、量產、上市等要求向來快速,以速度獲取市場商機,而車廠業者則多是百年工業,其產品使用年限長,對安全性的注重度高,從設計到製造,都需要經過較長的時間驗證,這也是車商在自駕車進展較慢的原因。 至於發展方向,以美國汽車工程師學會(Society of Automotive Engineers, SAE)制定的自駕車6個等級為例,車廠是由第0層逐步往上推,科技廠商則是先從第5層的完全無人自駕等級,回推思考技術有哪些欠缺,這兩種不同發展方向在時間的推演下,將在一定的技術環節交會。 觀察目前各大廠的自駕車發展,大多以自小客車為主,在此類應用中,不但車體中的感測器、運算單元、定位單元與操控單元須具備精準而快速的訊號擷取與反應能力,還須經長時間實地測試,以掌握所面對的複雜環境。本文將以自駕車系統中所須採用的通訊與定位技術為探討主題。 感測器穩定性為自駕技術關鍵 台灣目前由法人(如工研院)制定自動駕駛感知次系統,其中V2X通訊技術與應用於自駕車軟體架構中、行車安全性及聯網接收號誌狀態資訊的提升,扮演不可或缺的角色。自駕車系統軟體的運作流程概述如下: 首先,感測分析硬體(Camera、3D LiDAR、Radar與V2X路側通訊設備)收集車輛周圍資訊後(如道路是否有障礙物、道路路形等)先進行前置處理與資料對齊,接著透過深度學習影像辨識軟體針對偵測到的物件與資料進行訓練(Training Data);之後融合多重感測資料(Data Fusion),再進行即時事件推理(Event Sensing)—即區分Event Sensing Type:行人穿越道路(Pedestrian Crossing Road)與橫向來車 (Intersection Movement Assist);最後再儲存資料(Data Logging)。 自駕車系統架構中最關鍵的元件為前端感測器,其為發展自動駕駛技術領域中最重要的回授單元。近年來隨著先進駕駛輔助系統(ADAS)普遍應用於高階車輛,且安全、舒適、方便與節能方面亦有改善,使安裝多個感測器逐漸成為趨勢,同時成為發展自動駕駛等級SAE Level 5的基礎。透過這些先進感測器與機器學習軟體演算法處理,可讓車輛電控單元完整模擬,甚至超越人類在駕駛車輛時所使用的各種感官能力(Perception),實現同步即時的全方位環境感測能力,並針對感測結果判斷控制決策,因此感測器的穩定性研究成為目前自動駕駛技術的關鍵要素之一,其中運算速度、抗環境干擾能力與辨識精準度為目前發展的三個重要指標。圖1以NVIDIA為例,運算平台採用GPU架構可加速運算,每年以1.5倍的速度成長,預計於2025年將可達到1000倍的運算速度,可融合運算多種感測器。 圖1 自駕車運算平台以GPU架構為主流。  圖2以Google新創的自駕車公司Waymo為例,車上配掛光達與攝影機等感測設備,融合多重感測器抵抗環境干擾。 圖2 自駕車將融合多種感測器克服環境干擾。 圖3則是顯示目前自駕車採用3D光達技術,目的為提高物件辨識精準度。  圖3 自駕車採用3D光達技術,以提高辨識精準度。 兩大自駕車通訊技術 自駕車通訊技術,即採用車聯網V2X通訊,使自駕車具有對外連網能力,該技術可區分為兩大類,分別為短距無線通訊Dedicated Short Range...
0

晶心新推Superscalar處理器

晶心科技日前宣布將推出AndesCore 45系列處理器內核,配備高效的循序執行及超純量管線(In-order, Superscalar Pipeline)設計,可針對各種需高性能且低功耗的即時嵌入式系統,如5G、車載訊息娛樂系統(IVI)、先進駕駛輔助系統(ADAS)和固態硬碟(SSD)提供解決方案。晶心計畫於2020年第一季向早期採用的客戶提供45系列的內核。 晶心科技總經理林志明表示,45系列是晶心在發展高性能領域的重要里程碑,特別是現有的RISC-V指令集以及隨之而來的市場驅動力,該公司很多已簽約客戶都在詢問何時會將雙發射的專業技術引入到RISC-V內核,很高興研發團隊已成功將這項技術導入產品中。 高性能嵌入式系統已經有不少的應用,但是客戶在既有微處理器架構和固定指令的處理器生態系統上依然希望能有更多的自由度,AndesCore 45系列就是專門為此類需求提供的解決方案。 45系列中將推出32位元A45/D45/N45和64位元AX45/DX45/NX45,其分別衍生於晶心成熟的25系列內核,並支援所有最新的RISC-V規格、系統平台組件、以及晶心14年來所研發的生態系統。45 A-系列可支援Linux作業系統並最多可擴展到四個內核;45 N-系列則支援RTOS的應用,而45 D-系列則支援RISC-V的SIMD/DSP指令集(P擴充指令集草案)。所有45系列內核均採用循序執行的8級雙發射超純量技術,並透過晶心的儲存流水線設計,可在不犧牲執行速度的情況下執行ECC,並且可選擇符合IEEE754的單精和雙精度浮點運算單元(FPU)。AX45內核在ECC開啟的情況下,依然可以在28nm製程的PVT邊界條件下達到1.2GHz的頻率,使其成為該性能級別上最佳的CPU設計之一;而極為優越的流水線技術還使其達到良好的5.4 Coremark/MHz高性能水準。這些循序執行處理器,可增強代碼執行的即時準確性,當與具有向量優先序的平台級中斷控制器(PLIC)配合使用時,45系列內核適於對響應時間和即時準確性要求高的嵌入式應用。
0

愛德萬將於南韓半導體展秀新IC測試方案

南韓國際半導體展(SEMICON Korea)將於2020年2月5日至7日,假首爾COEX商場盛大登場,半導體測試設備供應商愛德萬測試(Advantest)將展示最新IC測試解決方案。 愛德萬測試全球行銷傳播副總Judy Davies表示,2020年的產品展示將著重呈現該公司多年來秉持先進測試技術,在不斷演進的半導體產業持續耕耘並做出貢獻。透過強化核心業務和開拓新領域,持續滿足瞬息萬變的半導體供應鏈源源不絕的新需求與挑戰。 除了高速記憶體測試解決方案外,愛德萬測試還將展示更多推動5G革命、加速其他革新應用的產品與解決方案,如先進駕駛輔助系統(ADAS)/自動駕駛、物聯網(IoT)/智慧裝置和人工智慧(AI)。 愛德萬測試將展出的最新重點產品含V93000 Wave Scale Millimeter解決方案,開創首款高度整合、模組化多部位毫米波(mmWave)ATE測試方案,能以良好成本效益測試高達70GHz的5G-NR毫米波元件;針對T2000系列測試平台設計,與最新圓形HIFIX整合的兩款新模組,在設計目的上為了擴大測試範圍、提升平行測試能力並降低使用於汽車之系統單晶片(SoC)元件的測試成本;首款兼具熱控制能力與高產能的測試平台MPT3000ARC,能進行包括PCIe Gen 4在內之固態硬碟(SSD)的極端溫度測試;和來自Advantest Test Solutions(ATS)的SoC系統級測試解決方案。
0

高效/節能為王道 功率元件材料/架構/設計翻新

在資料中心、車用電子、工業等眾多應用驅動之下,全球能源使用量大增,如何有效提高能源使用效率,同時兼顧可靠性與安全性,已是電源設計人員共通的開發課題。大數據和人工智慧(AI)興起,使得資料中心的雲端儲存/運算需求增加,導致耗電量大增;預估至2020年,資料中心的耗電量將突破730億度。另一方面,隨著工廠智慧化程度攀升,自動化設備的大量導入,使得整體工業用電量維持逐年上升的趨勢。 顯而易見,如何實現高效率的電源轉換已成當務之急,因此,新材料和新技術趁勢崛起,像是48V供電架構、電源模組、可程式/數位電源,及SiC/GaN寬能隙功率半導體等新技術,以達到高功率密度、縮小尺寸、提升能效、減少升溫,甚至可降低系統閒置時所需耗費的電力,壓低能源需求。本活動邀集代表性電源技術方案供應業者,深入探討提升電源系統能源轉換效率的設計關鍵。 SiC將發展高電壓/電流應用 半導體技術持續在各領域攻城掠地,羅姆半導體(ROHM)台灣技術中心資深工程師蘇建榮(圖1)表示,業界對電源技術的要求為節能、小型化與寬能隙(Wide BangGap)。由於傳統的矽(Si)已經達到物理極限,需要新的半導體材料以提供更優越的性能表現,碳化矽(SiC)與氮化鎵(GaN)為最常被提到的兩種新興功率半導體材料,其中碳化矽的矽與碳是1:1比例結合的IV-IV族化合物半導體,在高溫高壓的環境下長晶,熱、化學、機械等特性表現穩定。 圖1 羅姆半導體ROHM台灣技術中心資深工程師蘇建榮表示,碳化矽SiC被視為未來高電壓功率元件的明日之星。 因此SiC具有高擊穿電場強度、寬能隙與高熱傳導率三大特性,蘇建榮強調,SiC崩潰電場(Breakdown Field)是矽的10倍,能隙是矽的3倍,熱傳導率也是矽的3倍。所以有低導通電阻、高耐壓600~1200V;且可以快速切換,具備低開關損耗、可在超過150℃的環境工作,及可以流過大電流的優點,被視為未來高電壓功率元件的明日之星。 因此SiC MOSFET近年發展迅速,在其內部閘極電阻部分,該元件內部閘極電阻(Rg)與柵電極材料的表面電阻及晶片尺寸有關;如果是相同設計則與與晶片尺寸成反比,晶片越小閘極電阻越高;同等特性下,SiC MOSFET的晶片尺寸比矽元件小,因此閘極電容小,但內部閘極電阻增大,因此若要實現高速開關,外接閘極電阻要盡量小。蘇建榮認為,SiC在大電流與高電壓的應用前景備受看好,如馬達的牽引逆變器(Traction Inverter)、電動車充電系統、SiC不斷電系統、太陽光電逆變器(PV Inverter)等。 48V系統降低電源傳輸損耗 資料中心與AI邊緣運算近年高速成長,帶動高壓直流化趨勢,美商懷格(Vicor)資深技術支援工程師張仁程(圖2)指出,電源系統技術需求包括:更寬與更高的操作電壓、高輸出功率、高效率、高能量密度/小尺寸、低雜訊、高功率重量比(Power to Weight)、散熱(Thermal Dissipation)與遙測(Telemetry)設計等。為提高電源轉換效率,48V傳輸架構取代12V架構的呼聲越來越高。 圖2 美商懷格Vicor資深技術支援工程師張仁程指出,為提高電源轉換效率,48V傳輸架構取代12V架構的呼聲越來越高。 相較12V的架構,48V電壓提高4倍,傳輸耗損降為1/16。張仁程說,在相同瓦特數下,48V電流僅有1/4,阻抗損失為原本的1/16,以750W的供電實例而言,12V系統電流達63A,傳輸使用2AWG電源線,每公尺重量約273公克,3公尺線路損耗約13.6W;而48V系統電流降到16A,使用12AWG電源線,每公尺線路重量僅27公克,3公尺線路損耗8.6W,重量剩下1/10,損耗降低37%。 電源效率除傳輸效率之外,高低壓轉換也會產生耗損,目前一般的電壓轉換效率大概為97%~98%,努力的目標是提升轉換效率到99%,甚至零耗損轉換,包括雙向升降壓。張仁程解釋,零電壓切換(Zero-Voltage Switching, ZVS)是一種將電流引導到開關中以在開關打開之前均衡任一側電壓的技術,ZVS利用箝位開關和電路諧振,通過柔性切換有效地操作高端和同步MOSFET,避免了其在常規PWM操作和定時期間產生的損耗。另一種正弦振幅轉換器拓撲(Sine Amplitude Converter, SAC)是一個處於BCM模組核心位置的動態、高效能引擎。 工業/車用電源轉換器設計強化效率 在升降壓與電源傳輸時,都需要應用高效率電源轉換器,這也是另一個電源設計的要點,ADI代理商茂宣的應用工程副理洪家成(圖3)提到,在電源轉換器設計時,需要考量的重點如:輸出鏈波(Ripple)/雜訊、輕載效率、關機電源正常、大小/高度限制與環境溫度等。設計重點則為:瞬態響應(Transient Response)、線性調整率(Line Regulation)、輸入/輸出保護、電流限制/短路保護、安規保護、EMC/EMI等。 圖3 茂宣應用工程副理洪家成提到,Silent Switcher具有高效率、小體積與低EMI,即使在高切換頻率下亦能高效運作。 在工業環境,基於安全、接地迴路與能階位移(Level Shifting)等理由,採用隔離電源(Isolated Power)設計相對普遍,洪家成解釋,ADI經過簡化的Isolated Flyback電路,效率超過90%。在車用部分,降壓-升壓拓撲(Buck-Boost Topology),車輛行駛時電子系統會進行升/降壓,伴隨許多電流突波與雜訊,如何協助電壓轉換非常重要;另外車輛運行時會產生高溫,電子系統的散熱與抗熱也很重要,並且需要避免電磁干擾。 ADI發展Silent Switcher 2同步單片降壓開關穩壓器,為汽車與交通運輸應用所設計。洪家成說明,Silent...
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -