- Advertisement -
首頁 市場話題 高效/節能為王道 功率元件材料/架構/設計翻新

高效/節能為王道 功率元件材料/架構/設計翻新

- Advertisement -
在資料中心、車用電子、工業等眾多應用驅動之下,全球能源使用量大增,如何有效提高能源使用效率,同時兼顧可靠性與安全性,已是電源設計人員共通的開發課題。大數據和人工智慧(AI)興起,使得資料中心的雲端儲存/運算需求增加,導致耗電量大增;預估至2020年,資料中心的耗電量將突破730億度。另一方面,隨著工廠智慧化程度攀升,自動化設備的大量導入,使得整體工業用電量維持逐年上升的趨勢。

顯而易見,如何實現高效率的電源轉換已成當務之急,因此,新材料和新技術趁勢崛起,像是48V供電架構、電源模組、可程式/數位電源,及SiC/GaN寬能隙功率半導體等新技術,以達到高功率密度、縮小尺寸、提升能效、減少升溫,甚至可降低系統閒置時所需耗費的電力,壓低能源需求。本活動邀集代表性電源技術方案供應業者,深入探討提升電源系統能源轉換效率的設計關鍵。

SiC將發展高電壓/電流應用

半導體技術持續在各領域攻城掠地,羅姆半導體(ROHM)台灣技術中心資深工程師蘇建榮(圖1)表示,業界對電源技術的要求為節能、小型化與寬能隙(Wide BangGap)。由於傳統的矽(Si)已經達到物理極限,需要新的半導體材料以提供更優越的性能表現,碳化矽(SiC)與氮化鎵(GaN)為最常被提到的兩種新興功率半導體材料,其中碳化矽的矽與碳是1:1比例結合的IV-IV族化合物半導體,在高溫高壓的環境下長晶,熱、化學、機械等特性表現穩定。

圖1 羅姆半導體ROHM台灣技術中心資深工程師蘇建榮表示,碳化矽SiC被視為未來高電壓功率元件的明日之星。

因此SiC具有高擊穿電場強度、寬能隙與高熱傳導率三大特性,蘇建榮強調,SiC崩潰電場(Breakdown Field)是矽的10倍,能隙是矽的3倍,熱傳導率也是矽的3倍。所以有低導通電阻、高耐壓600~1200V;且可以快速切換,具備低開關損耗、可在超過150℃的環境工作,及可以流過大電流的優點,被視為未來高電壓功率元件的明日之星。

因此SiC MOSFET近年發展迅速,在其內部閘極電阻部分,該元件內部閘極電阻(Rg)與柵電極材料的表面電阻及晶片尺寸有關;如果是相同設計則與與晶片尺寸成反比,晶片越小閘極電阻越高;同等特性下,SiC MOSFET的晶片尺寸比矽元件小,因此閘極電容小,但內部閘極電阻增大,因此若要實現高速開關,外接閘極電阻要盡量小。蘇建榮認為,SiC在大電流與高電壓的應用前景備受看好,如馬達的牽引逆變器(Traction Inverter)、電動車充電系統、SiC不斷電系統、太陽光電逆變器(PV Inverter)等。

48V系統降低電源傳輸損耗

資料中心與AI邊緣運算近年高速成長,帶動高壓直流化趨勢,美商懷格(Vicor)資深技術支援工程師張仁程(圖2)指出,電源系統技術需求包括:更寬與更高的操作電壓、高輸出功率、高效率、高能量密度/小尺寸、低雜訊、高功率重量比(Power to Weight)、散熱(Thermal Dissipation)與遙測(Telemetry)設計等。為提高電源轉換效率,48V傳輸架構取代12V架構的呼聲越來越高。

圖2 美商懷格Vicor資深技術支援工程師張仁程指出,為提高電源轉換效率,48V傳輸架構取代12V架構的呼聲越來越高。

相較12V的架構,48V電壓提高4倍,傳輸耗損降為1/16。張仁程說,在相同瓦特數下,48V電流僅有1/4,阻抗損失為原本的1/16,以750W的供電實例而言,12V系統電流達63A,傳輸使用2AWG電源線,每公尺重量約273公克,3公尺線路損耗約13.6W;而48V系統電流降到16A,使用12AWG電源線,每公尺線路重量僅27公克,3公尺線路損耗8.6W,重量剩下1/10,損耗降低37%。

電源效率除傳輸效率之外,高低壓轉換也會產生耗損,目前一般的電壓轉換效率大概為97%~98%,努力的目標是提升轉換效率到99%,甚至零耗損轉換,包括雙向升降壓。張仁程解釋,零電壓切換(Zero-Voltage Switching, ZVS)是一種將電流引導到開關中以在開關打開之前均衡任一側電壓的技術,ZVS利用箝位開關和電路諧振,通過柔性切換有效地操作高端和同步MOSFET,避免了其在常規PWM操作和定時期間產生的損耗。另一種正弦振幅轉換器拓撲(Sine Amplitude Converter, SAC)是一個處於BCM模組核心位置的動態、高效能引擎。

工業/車用電源轉換器設計強化效率

在升降壓與電源傳輸時,都需要應用高效率電源轉換器,這也是另一個電源設計的要點,ADI代理商茂宣的應用工程副理洪家成(圖3)提到,在電源轉換器設計時,需要考量的重點如:輸出鏈波(Ripple)/雜訊、輕載效率、關機電源正常、大小/高度限制與環境溫度等。設計重點則為:瞬態響應(Transient Response)、線性調整率(Line Regulation)、輸入/輸出保護、電流限制/短路保護、安規保護、EMC/EMI等。

圖3 茂宣應用工程副理洪家成提到,Silent Switcher具有高效率、小體積與低EMI,即使在高切換頻率下亦能高效運作。

在工業環境,基於安全、接地迴路與能階位移(Level Shifting)等理由,採用隔離電源(Isolated Power)設計相對普遍,洪家成解釋,ADI經過簡化的Isolated Flyback電路,效率超過90%。在車用部分,降壓-升壓拓撲(Buck-Boost Topology),車輛行駛時電子系統會進行升/降壓,伴隨許多電流突波與雜訊,如何協助電壓轉換非常重要;另外車輛運行時會產生高溫,電子系統的散熱與抗熱也很重要,並且需要避免電磁干擾。

ADI發展Silent Switcher 2同步單片降壓開關穩壓器,為汽車與交通運輸應用所設計。洪家成說明,Silent Switcher具有高效率、小體積與低EMI的特性,即使在高切換頻率下亦能高效運作。其設計包含整合式旁路電容器、接地平面、銅柱和具控制功能的切換邊,能降低EMI/EMC輻射。Silent Switcher 2穩壓器的同步整流可在2MHz切換頻率下達到最高95%的效率,穩壓器在叢發模式運作下可達到低靜態電流,在小負載下實現高效率。

GaN快速切換助力充電器設計

氮化鎵具有包括RDS(on)更小以及開關損耗低,導通電阻更小,也就是帶來更小的導通損耗。Power Integrations(PI)資深FAE劉志偉(圖4)提到,對於開關損耗來說,主要是電壓從高壓到0時電流從0到最大,這其中的交疊區域會產生功耗,GaN由於可以具有更高的轉換頻率,因此開關損耗也更低。傳統充電器使用矽作為功率元件材料,不僅體積較大而且效率低下,在充電時由於散熱問題會浪費了20%的潛在能量。

圖4 Power Integrations資深FAE劉志偉說,氮化鎵元件可以讓充電器降低能量損耗,同時減小其尺寸。

氮化鎵元件可以讓充電器降低能量損耗,同時減小其尺寸。PI的InnoSwitch 3系列離線CV/CC返馳式切換開關使用高壓GaN在滿載範圍內的效率高達95%,在密封式轉換器實作中效率達100W,且無需散熱器。劉志偉指出,GaN切換開關取代了IC一次側的傳統矽高壓電晶體,減少了電流流過時的導通損耗,並降低運作期間的切換損失,可以減少能源浪費,提高節省空間的InSOP-24D封裝的效率和功率輸送。採用PI GaN元件的充電器合計出貨量已超過100萬組,氮化鎵已證明其商業化應用的實力。

相關文章

- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -