在傳統的IC設計流程裡,當晶片設計者完成線路布局(Place & Route)後,下一個步驟就是要藉由模擬來確認晶片設計是否能如預期運作,此一步驟又稱為設計簽核(Design Signoff)。由於先進製程的一次性工程成本(NRE)十分驚人,為了避免產品在投片後才發現問題,白白浪費時間與金錢,因此許多IC設計者都會在設計簽核階段非常小心地審視自己的晶片設計,以求萬無一失。
然而,隨著半導體製程線寬越來越細微,很多原本不被認為會引發問題的物理現象,都開始干擾晶片的正常運作。前幾年某晶片設計大廠的應用處理器,就發生過出貨後晶片無法穩定運作,需增加供電電壓才能恢復正常的事件。
業界一般認為,此問題的出現,跟電晶體密度過高引發的壓降(IR Drop)脫不了關係。IR Drop是一個典型的物理現象,跟電晶體的內阻有關。當電晶體數量太多,就像一個串聯電路上串連了太多燈泡,超過供電的負荷能力後,燈泡的亮度會因為電壓不足而變暗。也因為如此,在此事件之後,每年EDA工具商所舉辦的論文評選活動,討論IR Drop議題的論文總是能拿到前三名大獎。
先進封裝技術的普及,更使得晶片業者在開發產品時,必須考慮到更多更複雜的物理問題。例如多晶片封裝引發的機械結構問題,以及整合了天線的毫米波元件,必須審慎檢視電磁場的場型分布等。這些趨勢都使得多物理模擬開始在EDA工具流程中,扮演更舉足輕重的角色。
多物理模擬成為EDA必備工具
安矽思(Ansys)資深技術經理魏培森(圖1)表示,真實世界本身就是一個由多重物理現象所構成的世界,就像高品質的汽車頭燈設計,考量的不只有亮度、聚焦與發光效率,更多的輔助設計是在處理濕度與高溫造成的問題。

晶片設計的情況也是一樣,隨著晶片的微型化與複雜度與日俱增,不單只是電源一致性(Power Integrity, PI)、訊號一致性(Signal Integrity, SI)與時序(Timing)等傳統設計簽核所包含的項目,在先進封裝興起的當下,異質結構的整合、散熱問題、熱形變、撞擊甚至是電磁干擾(EMI)的設計,也是目前晶片設計者在開發晶片時,必須要考慮的重點項目。
更複雜的是,這些物理問題往往彼此耦合,牽一髮動全身。例如電的損耗會轉變成熱能,熱則會造成晶片或模組的溫度上升,倘若溫度上升不均勻,還會造成型變,變成機械結構的問題,進而影響晶片的可靠度與使用壽命。這些都是目前晶片設計者目前所遭遇的多重物理挑戰。
益華電腦(Cadence)資深技術經理白育彰(圖2)則表示,由於晶片設計日益複雜,EDA工具的使用者對多物理模擬工具的需求,確實在近幾年逐步走強。在拜訪IC設計相關客戶時,很多用戶均提出與多物理模擬相關的需求。

事實上,Cadence在很多年前就已預見多物理模擬對EDA工具的重要性,並在2012年購併Sigrity,從SI領域切入多物理模擬後,持續擴張自身在多物理模擬領域的產品線。目前Cadence內部已將多物理模擬工具,包含Sigrity、Celsius、Clarity等劃歸為多物理系統分析(MSA)部門,以整合研發資源,強化業務推動。
多物理問題彼此耦合 工具必然平台化
由於真實世界裡的各種物理現象彼此間往往存在複雜的連動關係,因此多物理模擬工具必然要走向整合,才能幫使用者解決問題。
魏培森指出,現有的IC設計流程大多只有考慮到電氣行為的分析,也就是傳統的PI、SI跟Timing,對於物理特性的模擬並沒有完整的設計流程。這些都是全新的設計流程,也都正是Ansys現在正在著墨的。
首先,原來2D的思維要變成3D,傳統IC電氣分析都是2D的、都是平面的,但是眼前的物理現象都是3D的,熱的擴散、應力的變化都是3D的,所以模型必須改變。其次,材料資料庫要增加,包含熱阻係數、熱傳導率、比熱、密度、彈塑性、楊氏係數等材料特性的參數,都要納入資料庫。
此外,跟電氣行為的模擬相比,多物理模擬的維度也大不相同。像是穩態、暫態、線性、非線性等型態的模擬,以及如何建立熱源模型、模擬電-熱轉換,都是多物理模擬必須思考的問題。
有鑑於各種不同的物理現象之間,存在著千絲萬縷的連動關係,ANSYS首先提出Workbench設計平台,整合大部分的現有技術,提供熱、電、應力多物理的整合模擬平台,客戶可以Workbench上呼叫Ansys各種電、熱、應力旗艦產品,先進行單一物理現象的模擬,亦可以在平台上互相串連,如電損耗的輸出當成熱分析的輸入、熱分布的結果變成應力計算的能量不均勻分布,一環接一環得到最接近真實物理世界的模擬結果。
在晶片等級的分析上,除了aedt(ANSYS Electrical DeskTop)可以當作共模擬平台外,考量CPS(Chip、Package、System系統)各有各的設計know-how,彼此間不容易分享與取得最完整的3D模型進行資料串聯,ANSYS也提供CTM(Chip Thermal Model)、CPM(Chip Power Model)、CSM(Chip Signal Model)等標準模型格式,讓各個領域能有非常方便的共模擬模型。
白育彰則表示,Cadence的多物理模擬工具產品組合,也正在以平台化的模式不斷擴張中。除了處理SI、PI問題的Sigrity、負責熱模擬的Celsius,以及跟電磁(EM)有關的Clarity等獨立工具還會持續增添更多新功能外,跨工具的整合跟串聯,也是Cadence正在努力的方向。舉例來說,針對大尺度電磁模擬,主要是射頻(RF)相關設計,Clarity很快就會有新的功能發布。未來Cadence還會進一步推出光學跟應力有關的模擬工具,以滿足用戶需求。
但由於Cadence本身還有很強大的前段設計工具,因此除了水平方向的平台化之外,Cadence的多物理模擬工具其實更注重與前後段設計工具的整合。例如將模擬的結果跟前段設計工具串聯,讓客戶能更快完成產品設計。畢竟客戶不是為了模擬而模擬,而是為了晶片的製造才進行模擬。把模擬的結果跟設計工具無縫銜接起來,提高設計工程師的生產力,是Cadence獨特的競爭優勢。
由Cadence與Ansys的產品發展策略,可看出不同公司由於所處產業地位的不同,採取的策略也會大異其趣。Cadence顯然是將多物理模擬作為EDA流程中越來越重要的一環來經營,因此強調的是與前後段工具的整合,Ansys則是老牌的多物理模擬工具大廠,因此著眼點在不斷強化多物理模擬解決方案的涵蓋率,並且對於跟其他EDA公司的合作,抱持著開放態度。兩種策略取向有不同的優勢,但也有其弱點。IC設計者如何評估跟選擇,將是需要仔細思量的課題。