- Advertisement -
首頁 標籤 PPG

PPG

- Advertisment -

消阻抗/降功耗促生理監控快又準 生醫穿戴裝置聲勢看漲

血氧飽和度、心電圖(ECG)、血壓以及呼吸率等,是過去被局限於醫院監控設備的量測應用。持續監控這些參數至關重要,尤其是對於那些具有醫療風險的病患,無論是手術、發生事故或是被診斷出急重症等情況。隨著人口高齡化以及社會日漸關切醫藥財政支出,在院外進行醫療監控(Medical Monitoring)成為一股逐漸升高之趨勢。現在,在日常生活中也能持續監控這些病患的狀態,藉以及早發現問題,或是出院後選擇繼續配戴監控裝置,以便更迅速、舒適地康復,另外還有第三類使用者,他們量測這些參數的目的是為了事先防範,包括尚未診斷出任何病症的使用者。 各種多重參數監控裝置有著相同的須求:它們必須體積小巧、量測精準而且充飽電後能維持長時間運行。為支援這樣的趨勢,業界已經開發出各種新系列單晶片生物醫學類比前端元件。 新生醫感測元件最佳化系統配置 目前市面上有不少結合兩種甚至更多量測功能的多重參數系統,像是結合心律監控裝置和動作感測器來追蹤活動,或是結合心律變異性和阻抗感測功能來支援壓力監控或睡眠分析等應用。在大多數情況中,不同的量測功能都會由一個專屬的類比前端元件負責,以致整個系統會用到多個晶片,而每個晶片都會配置專屬的類比至數位轉換器(ADC)、連結主處理器專屬介面以及多個電源供應器與參考電壓,且這些元件都必須解耦合,這將產生許多冗餘模組,就尺寸與功耗的角度來看,這並非是最佳化的系統狀態。在穿戴裝置系統中,最簡單的做法莫過於用一個主訊號鏈連結每個感測器,如亞德諾半導體(ADI)新推出的ADPD4000系列生物醫學前端元件便填補了市場缺口。圖1顯示該系列元件的高階模組圖。前端部分設計兩個相同的接收通道,兩者可同時進行取樣。每個通道都是分別建置,因此系統可用單端或差動量測模式來量測任何感測器的輸入數值。輸入等級(Input Stage)部分是一個跨阻抗放大器,擁有可編程的增益,然後接著一個帶通濾波器和積分器,能加總處理每個取樣的7.5pC數據。 圖1 ADPD4000系列元件的高階模塊圖 ADC是一個14位元的連續近似暫存器(SAR)轉換器,最高取樣率為1MSPS。每個訊號鏈的前端是一個8通道多工器,為類比前端元件提供彈性,能將各種感測器訊號繞送到類比前端元件。 這顆晶片可量測多種訊號,如圖1所示。藉由修改AFE,該晶片可以成為光學前端元件,用來執行光學式心律量測或血氧飽和度。在這種模式中,系統需要一個高跨阻抗輸入等級以便將電流轉換成電壓。另外,還須消除環境光線產生的干擾。 另一個使用情境,則是量測從心電圖或肌電圖(EMG)感測器傳來的生物電位訊號。這種量測需要不同的輸入訊號鏈設定,因此必須重設前端元件的各項設定,接著取得訊號鏈,這顆晶片也支援8個輸出驅動器,可用來提供刺激訊號(Stimuli)。另外也可以設定一或多個輸出訊號來驅動LED以執行光學量測,或是用一或多個輸出訊號來執行阻抗量測,於執行監控膚電活動(Electrodermal Activity, EDA)時產生的皮膚阻抗或電極阻抗等可能影響量測品質的生物電位量測。 這顆晶片讓使用者能預先設定每種組態,或是在某個時槽進行量測,它最多支援12個時槽,這使系統一旦完成初始設定就非常容易使用。此外,這顆晶片不需要額外的處理器資源,有助於將整體功耗壓至較低程度。在晶片方面,則可以進行過度取樣後取平均值,藉以改進ADC的有效位元數(ENOB),而降取樣資料通道的寬度為32位元。量測結果可儲存在256或512位元組深度的FIFO元件如ADPD400x與ADPD410x中。 整合的時戳功能,可以對多個連結感測器傳來的資料樣本進行同步化。多個感測器資料可用來尋找不同量測結果之間的關聯性。圖2顯示這顆晶片用來同步執行心電圖與光體積變化描記圖法(PPG)的量測。基於脈衝傳遞時間(PPT)量測技術,它可以在連續模式下量測血壓,這對高血壓患者來說具有吸引力,而時戳功能就是實現這種量測能力的關鍵。 圖2 同步執行ECG與PPG量測藉以推估血壓 圖3a顯示支援時槽的方式。每個時槽的最前緣是一個預調節脈衝,隨後緊接著為一個刺激脈衝,最後則是光二極體的電流或是ADC取樣的另一個訊號。 圖3b顯示一個作業程序的例子。啟動電源後,接著執行重置作業,晶片便會進入休眠模式;喚醒晶片後,再循序取樣兩個ECG訊號(像是LEAD I和LEAD II),接著進行光學量測,以執行SpO2的讀取,並進行阻抗量測以測量膚電傳導(EDA/Stress)。接下來的段落會說明這幾項量測的程序。 圖3 時槽作業的例子以及ADPD4000量測程序 被動量測電荷排除阻抗兼顧省電 心電圖係量測人體心臟產生的電子訊號,亦即每次心跳時心肌的去極化(Depolarization)與再極化(Repolarization)過程所發出的訊號。這類訊號的幅度範圍在0.5mV至4mV之間,可在0.05Hz至40Hz頻率內測量到。 雖然可以單純用心電圖來量測心律,但在許多使用情境下,人們對於其波形本身更有興趣,因為波形可用來量測心臟表現或預先警告潛在的心臟事件,像是心房顫動或持續性高血壓。人們可以透過將電極連接皮膚來監控心臟活動,而為了在診斷中確保電極能接觸到身體,一般都會採用銀(Ag)或氯化銀(AgCl)材質的濕式電極。在非住院的應用中,這些電極不僅穿戴時極不舒適,而且容易使皮膚乾燥或刺激皮膚。此外,雖然乾式電極也很常用,但皮膚與電極之間的接觸面會逐漸降低,以致對動作假象(Motion Artifact)更加敏感,導致量測精準度下滑。 應用在醫院以外的裝置,總是必須在高品質電極與配戴舒適度之間取捨。但ADPD4000不僅能解決這方面的難題,還可以提供較精準的量測結果,不受電極品質所影響。因為它的ECG電路不是使用電壓輸入,而是量測電容器上累積的電荷,利用被動式電阻電容網路(RC Network)以及取樣率,可計算出最佳化時間常數,進而排除在充電過程中皮膚與電極接觸阻抗的變動。如圖1顯示的心電圖訊號經由電阻電容網路耦合到晶片。這個ECG電路本身能排除皮膚與電極接觸阻抗變動所產生的影響。 圖4顯示兩個心電圖波形。其一波形是用高品質電極所量測,串聯阻抗為51kΩ,電容為47nF;另一波形則是透過品質不佳的電極所量測,其串聯阻抗較高,而接觸阻抗為510kΩ,電容為4.7nF。但可以看到量測到的波形幾乎相同,不受電極品質所影響。相較於市面上其他廠商的解決方案,這項特性是較大的優勢。另外的優點還包括這個電路較為省電,因為它在擷取充電電容上的心電圖訊號時毋須一直啟動,另一項優點,則是它的功耗僅為150μW到200μW。 圖4 透過不同電極量測到的兩個心電圖波形 PPG可編程設計力助生物阻抗量測 在光學與生物阻抗量測方面,需用到LED驅動器來發射光線和激發電流至體內。在許多光學系統中,會用到兩種以上波長,因此晶片的多功能變得極普遍。ADPD4000具備8個輸出驅動器,其中4個通道能使用可編程輸出電流同時啟用,每個通道最高200毫安培,整個驅動器區段(Section)最多到400毫安培。視實際的組態可運用多個時槽工作,每個時槽都有自己的波長可用來量測,諸如光學心律、血氧飽和度、含水量或脫水等。時槽接收到的訊號鏈都配置一個可編程跨阻抗放大器,緊接著一個雙級拒斥模組,以用來消除環境光線產生的干擾。在傳送/接收訊號鏈的訊號雜訊比(SNR)方面,ADPD41xx系列元件最高可達100dB,因此特別適合用在對雜訊敏感的光學量測方面,例如血氧飽和度量測或血壓估算。光學系統的功耗很大程度取決於系統組態,像是取樣率與縮小取樣比率(Decimation Rate),以及採用的LED電流。另外,功耗也和使用者量測的身體位置以及膚色成比例。 許多穿戴系統也能為各種應用量測皮膚電導,其中包括像膚電活動、壓力或心理狀態監控。而為了量測電壓降系統會需要一個刺激電流,ADPD4000則可支援這種使用情境。同時可透過2或4線量測模式來設定晶片,但由於沒有內建增強形波形產生器以及DFT引擎,因此若需要阻抗頻譜,可用AD5940當作對照晶片來輔助。另外阻抗功能還可用來量測電極品質,或是偵測電極脫落的狀況。由於ADPD4xxx擁有8通道多工器,因此也支援輔助輸入,可量測電壓、電容、溫度或是系統內的動作。 穿戴裝置新元件滿足各方需求 隨著如ADPD4000/001等元件的推出,使得研發業者在開發穿戴裝置、身體貼片或藥物輸送系統時所遇到的許多挑戰都能迎刃而解。在這些使用情境中,效能、尺寸以及功耗都是關鍵。該款全新生物醫學前端元件具備高效能、雙通道感測器輸入等級、刺激通道、數位處理引擎、時序控制等元素,因此能滿足所有需求。上述元件已開始量產和供貨,而下一代商品已在2020年第一季上市。新世代元件改進了訊號雜訊比規格,並納入額外的功能,有助於進一步降低整體系統功耗。儘管功能全納入到單一晶片,但這並不會讓電子設計工程師的需求降低,因為每個系統都有自己的特性,同時還有許多參數必須逐一調校設定。 (本文作者為ADI醫療保健事業開發經理)
0

生理感測搭配演算法 穿戴設備結合人工智慧再升級

根據IDC統計,2020年第一季全球穿戴式設備出貨量成長29.7%,市場對於醫療科技及個人健康管理的重視帶動穿戴式裝置設計,手表、手環以及智慧眼鏡皆陸續加入心律、血氧、睡眠等監測功能,在生理保健與記錄方面越來越全面。穿戴裝置在心律測量功能後,陸續推出血氧、血壓等生理感測項目,透過光學或電流感測晶片,量測使用者的生理數據,同時提供異常狀況示警功能,有助於追蹤管理各項疾病。 作為具保健用途的穿戴產品,量測數據的精準度便是最大關鍵,在功能眾多的前提下,顧及節約耗電的需求也是一大挑戰。各家廠商為達成提升量測精準度並兼顧低功耗,無不在其晶片設計下足功夫,並且結合人工智慧(AI)演算法,透過軟硬結合的形式優化數據品質。部分ICT業者甚至進一步取得醫療認證,布局醫材市場。本文將透過探討穿戴設備量測生理數據感測元件設計,以及量測項目之發展,透析穿戴量測技術及市場之未來趨勢。 力求產品差異化 精準量測下足功夫 穿戴式產品競爭激烈,品牌商與晶片供應商看準新興的生理感測功能,希望透過提升量測項目與精準度,達到產品差異化的目的。ams大中華區總經理李定翰(圖1)提及,ams採用光學及電學感測,加上軟體演算法,蒐集不同人種的生理數據資料,提供軟硬整合的解決方案,並依照應用端需求,如登山、居家照護、健身等情境,以精準度為首要的考量來設計晶片,提供相應的感測功能。心律感測方面,ams原本使用單一的PPG感測,目前則整合進ECG心電圖,取得心律與血壓數據後,再配合演算法提供使用者心臟症狀的預警。 圖1 ams大中華區總經理李定翰提及,ams採用光學及電學感測,加上軟體演算法,提供軟硬整合的解決方案 生理感測晶片的技術核心不離光學感測,羅姆半導體(ROHM)台灣技術中心協理林志昇(圖2)說明,感測器設計過程中,不容易兼顧耗電及取樣速度。生理量測技術在取得生命徵象數值越複雜的狀況下,需要提高取樣頻率及測量次數,以增加數據的精準度,但因此面臨功耗增加、應用裝置驅動時間減少等挑戰。另外基於感測元件的待機耗電量及使用環境的雜訊考量,在穿戴設備的感測器設計上,需考量電子元件的低耗電需求,以及對抗外在雜訊干涉及濾除。而羅姆的光學式脈搏感測元件的基本原理,是藉由綠光LED量測血液中的血紅素之移動,結合演算法支援壓力測量和血管年齡測量等生命徵象數值的計算,設計高精度且低功耗的感測器。測量脈搏時的耗電量僅為0.44mA,有助於延長應用裝置的驅動時間。 圖2 羅姆半導體台灣技術中心林志昇協理說明,感測器設計過程中,不容易兼顧耗電及取樣速度 新創公司臺醫光電則由醫材角度出發,研發反射型生理訊號感測器。臺醫光電科技行銷部經理陳婷如(圖3)表示,該感測器同樣利用光學原理,於手腕位置連續測量心跳及血氧飽和度,感測血管的收縮變化,並蒐集PPG訊號,經由微透鏡及DOE鏡片調控LED發射光進入受測組織的能量分布,增強出光效率及收光強度,減少由皮膚表面直接反射的雜光,也使得耗電量大幅降低,且不易受到運動的干擾。目前臺醫光電的智慧腕表已經商用化且通過歐盟CE、美國FDA等醫療認證,期望建立自家生態系或與其他廠商策略聯盟,在台灣的智慧醫療市場中取得一席之地。 圖3 臺醫光電科技行銷部經理陳婷如表示,感測器增強出光效率及收光強度,減少由皮膚表面直接反射的雜光 ICT業者/醫材廠商各有策略 針對ICT業者與醫材廠商在穿戴式裝置感測的布局,資策會MIC產業分析師徐文華(圖4)認為,ICT產業的生理感測產品多以消費電子為主,與醫療產業的重疊度較低,不易取得合作,因此若有意發展醫療級的穿戴式產品,可能採取合作或購併形式,其中又以美國市場私人醫院盛行,比較有機會促成科技與醫材廠商的合作。另一方面,就醫材廠商而言,醫材是剛性需求,廠商多半專注研發醫用穿戴設備,並積極通過各國醫療法規。其中糖尿病偵測為熱門的研究議題,因為糖尿病是常見的慢性疾病,而傳統的糖尿病檢測需要侵入式採集血液,便有廠商開發偵測糖尿病患者體內數據的貼片,除了能夠執行連續且非侵入式的疾病監測,還可以在患者有藥物注射需求時,直接透過貼片中的針頭為病患注射。 圖4 資策會MIC產業分析師徐文華認為,ICT產業的生理感測產品多以消費電子為主,與醫療產業不易取得合作 資策會MIC產業分析師張軒豪(圖5)觀察,現在用於健康管理的穿戴裝置,常見整合PPG及ECG,並加入身體狀況的示警功能,未來可能發展體液及眼淚的量測。雖然體液及淚液的生理感測尚在研究階段,但是體液及眼淚皆帶有大量生理資訊,若結合智慧隱形眼鏡、智慧耳環等應用,且能進一步濾除環境雜訊,便能長期、連續量測使用者的生理數據,有機會在未來取代侵入式的抽血檢查。 圖5 資策會MIC產業分析師張軒豪觀察,現在用於健康管理的穿戴裝置,常見整合PPG及ECG 穿戴裝置走向專業分工智慧眼鏡具發展潛力  綜觀穿戴式裝置的定位,徐文華表示,穿戴設備的功能發展接近小型的手機,已有廠商將行動支付、通訊及語音助理整合進穿戴設備中,下一步可能會連接家電,成為智慧家居聯網的裝置之一。而感測項目方面,未來三到五年,心臟的感測仍會發展最快,體溫感測的應用也越趨多元,除了智慧手表,還可能透過貼片或耳掛式裝置測量生理數據。 李定翰補充,很多穿戴式裝置開發初期為了與其他產品競爭,在產品中不斷增加感測器的數量,走向多功能跟高度整合的設計,未來則可能發展成高度分工的產品,依照健身、登山、高齡照護、心臟病監測等,細分不同的功能取向。 智慧眼鏡也是一個穿戴應用趨勢,李定翰指出,人類判斷情況的依據70%來自視覺,結合VR/AR的視覺眼鏡前景可期。但是產品設計上須把視覺數據轉換成有用的資訊,達到精準與有效是很大的挑戰。另外,很多大廠推出智慧眼鏡後的銷售跟測試結果,在功能方面尚未符合市場預期。就使用者需求而言,應該藉由語音辨識下達指令,結合大數據與感測器,甚至有能力執行肉眼看不到的熱感測工作,用以防止流行並傳染,才能充分發揮智慧眼鏡的優勢。 現在所有廠商都在搶攻人身產品的市場,因為戴在手上的手環跟智慧眼鏡配置的位置非常獨特,手機無法取代穿戴裝置的市場定位。而穿戴感測如何跟手機相輔相成,或是把手環跟眼鏡當作擷取生理數據的一個節點,這個節點承受的項目越齊全,或是能承受的資料輸出量及感測器的能力越好的話,對於後端的處理與使用者平台的黏著度都有良好的影響。當使用者對品牌及系統的黏著度提升,便有機會塑造影響力類似蘋果(Apple)的全球品牌。
0

模擬皮膚吸收/散射光源 光學式心率感測橫越萬重山

PPG感測器重皮膚模擬 PPG感測器為光學式心律感測器,可分為穿透式或反射式。反射式PPG感測器之量測區域較不受限,因此可運用於手腕上量測,目前已廣泛應用於消費市場中,如:運動手環、智慧手表。反射式PPG感測器架構包含LED光源、光偵測器、擋牆與蓋板。LED光源與光偵測器放置於同側,光線由LED光源出發,入射皮膚組織與血管後,產生反射散射光,最終由光偵測器接收。 圖1 PPG感測器原理示意圖 要於光學軟體中設計PPG感測器,皮膚組織的模擬就顯得特別的重要,皮膚組織屬於生物組織的一種,生物組織具有兩項重要的光學屬性:吸收與 散射。吸收特性的模擬,通常以穿透率表達。假設光線通過厚度為L的組織,則穿透率計算遵循比爾-朗伯定律(Beer–Lambert law): 其中ma為吸收係數,單位為mm-1 。射特性則由Henyey Greenstein散射模型描述,以下為公式: 其中q為散射角度,g為異向性係數,此係數值介於-1至+1之間,可影響散射的分布。 圖2 Henyey Greenstein散射模型之異向性係數變化 LightTools提供多種體散射材料模型,包含Henyey Greenstein散射模型,可用於生物組織之模擬。 圖3 LightTools體散射材料模型 透過Henyey Greenstein體散射模型,可自訂生物組織材料,如:皮膚。設定之係數包含:折射率、吸收率、平均自由程MFP (mm)/散射係數(μs) /傳播散射係數(μs’)、異向性係數(g)與穿透率。 圖4 LightTools之Henyey Greenstein體散射模型 LightTools提供內建之生物組織材料資料庫,這些材料使用Henyey Greenstein體散射模型進行定義,使用者可以直接選擇適當的生物組織材料進行使用。 圖5 LightTools生物組織材料資料庫 皮膚組織模型的建構可直接套用材料資料庫中內建的生物組織材料,模型各層之間的介面則可使用自動光膠功能,去除中間的空氣層,確保模擬正確性。 圖6 皮膚組織架構與光膠設定 在LightTools中以平行光源入射皮膚模型的模擬結果(圖7)。 圖7 皮膚模型、光線預覽與照度分布結果 模擬/設計/分析 以下內容將介紹PPG感測器之案例,說明如何在LightTools中建立模型,並進行模擬、分析與設計。PPG感測器模型包含:LED 光源、光偵測器、擋牆、底座、外殼、封裝膠與蓋板。透過LightTools內建之物件功能與布林運算功能可建立PPG感測器之幾何模型。 圖8 運動手環主體與PPG感測器 光偵測器、擋牆、底座與外殼之表面光學材質設定為吸收,蓋板與封裝膠表面光學材質為平滑光學,設定非涅爾損耗。蓋板材料折射率為1.43,封裝膠則使用內建資料庫材料DowcorningMS_1003_Moldable_Silicone。 圖9 封裝膠使用內建之Dowcorning MS_1003 Silicone材料 光源以表面光源建構,光強度Imax為1.5 mcd。光譜之波段為綠光,中心波長為:535 nm。光形與光譜則如圖10與11。 圖10  LED光源光形 圖11 LED光源光譜 在光偵測器物件之上表面直接建構表面接收器,偵測器之光譜響應則可以利用鍍膜功能進行設定。 圖12 接收器之光譜響應 如果希望模擬外在環境光對於PPG感測器的影響,使用內建太陽光源工具建立太陽光源。 圖13 太陽光源實用工具 圖14 太陽光譜與日曬資料 直射太陽光與漫射太陽光皆設定光源定位區域,限定光線朝向定位區域追跡,以提升光線採樣效率。 圖15 太陽光源之定位區域設定 初步的模擬結果如圖16,LED光源入射皮膚組織,經皮膚組織體散射後追跡至光偵測器,此光線路徑通常為弧狀的路線,稱之為Banana-Shaped Light。 圖16 PPG 感測器模擬之Banana-Shaped Light光線預覽 光偵測器接收的光線可能來自LED光源或外在環境光,有用的訊號為LED光源入射皮膚組織,經體散射至光偵測器的光線,其他的雜散光則可能干擾有用的訊號。雜散光的來源可能來自LED光源入射蓋板表面,反射至光偵測器,或者當蓋板未完全接觸皮膚表面時,LED光源入射皮膚表面,反射至光偵測器。除此之外,也可能由環境光間接入射光偵測器。在LightTools中使用接收器過濾器、區域分析與光線路徑功能,可區分出這些光線,協助後續分析與設計。 此案例使用的過濾器包含光源過濾器與體積介面過濾器。光源過濾器可分析LED光源或環境光的貢獻,體積介面過濾器則可分析經皮膚組織體散射的光線。 圖17 接收器過濾器設定 若要顯示過濾器過濾出的光線預覽,則可使用區域分析功能。將區域尺寸與網格範圍設定相同的大小,切換過濾器條件時,即可顯示相對應的預覽光線。 圖18 區域分析功能 為了方便分析不同的過濾器條件之狀態,可透過配置功能,在同一個模型下設定多種配置條件,使用者可快速切換至不同的配置進行模擬或分析。 圖19 配置功能 圖20 不同配置條件的結果   雜散光分析則可藉由光線路徑功能,記錄光線在系統行進的所有光學路徑,結果包含各路徑的功率、光線數與循序經過每個表面的資訊。 圖21 LED光源之雜散光分析 當系統中無擋牆設計時,LED光源光線入射蓋板之前後表面,反射至光偵測器形成雜散光,加入擋牆後,蓋板前表面之反射已阻隔,仍有蓋板後表面之反射,但能量已減弱。   圖22 加入擋牆前後的差異 藉由參數分析程式進行分析,可探討擋牆厚度變化對於蓋板後表面反射雜光的影響,此工具可掃描不同的模型條件,並自動化儲存網格數據、圖像與模型於特定資料夾中。 圖23 參數分析程式 擋牆寬度需設定為變數,接收器的入射功率則設定為評價函數進行掃描,寬度由0.1 mm到0.4 mm,每0.05mm掃描一個值,共7筆數據,最終設計中,寬度在0.35mm時,已可阻擋大部分的雜光。 圖24 掃描不同擋牆厚度的結果 光源與光偵測器間距亦會影響有效訊號與雜散光,因此第二部份我們試著改變光源與光偵測器間距,分析有效訊號與雜散光之間的能量變化,以設計出較佳的結果。利用參數控制定義LED與光偵測器之距離參數,並建立訊號與雜訊之比例運算式。 圖25 參數控制設定 再藉由參數分析程式進行分析,將光源與光偵測器的間距設定為變數,各接收器的入射功率與能量值設定為評價函數,掃描光源與光偵測器的間距,由1.5mm到2.3mm,每0.1mm掃描一個值,共9筆數據。 圖26 光源與光偵測器的間距掃描結果 由掃描結果可得知,光源與光偵測器的間距為1.5 mm時,LED光源之皮膚組織體散射能量較強,LED光源之雜散光能量較低,訊雜比為2.36。 圖27 光源與光偵測器間距為1.5mm的結果 最後,將光源數量增加為兩顆LED,LED以對稱方式排布,可提高有效訊號的能量,降低環境光的影響。 圖28 最終設計的PPG感測器模型 最終的模型,皮膚組織的體散射能量增加,訊雜比則由原本2.36提升至3.99。 圖29 雙顆LED光源的設計結果 (本文作者為思渤科技應用工程師)
0

健康檢測需求強勁 穿戴裝置光電二極體使用量倍增

根據TrendForce調查,雖然在新冠肺炎影響下,2020年穿戴裝置(含智慧手錶及手環)的出貨量成長略微放緩,但隨著強化健康檢測性能的需求增溫,相關零組件市場仍維持強勁動能。例如為了提升感測數據的準確度,穿戴裝置廠商會使用更多的綠光LED與紅外線LED,並增加光電二極體(Photodiode)體積,使得顆數需求呈現倍數成長。 TrendForce指出,穿戴裝置多採用光體積變化描記圖法 (Photoplethysmography, PPG) 技術,以光學方式取得使用者的心跳、血氧、甚至是血壓、血糖、水分汗液等數據。產品設計分為發射端與接收端,發射端一般以綠光LED搭配紅外線LED,偵測特定時間流經手腕的血液量,來得到心跳的數值。若以紅光LED搭配紅外線LED,可得到特定時間去氧血紅素與含氧血紅素的差異,藉此換算血氧濃度。 接收端產品設計則多採用光電二極體 (Photodiode),具有低暗電流的大面積光電二極體,可提供快速響應時間,並完整接收LED能量。例如Apple Watch 4的使用顆數就是Apple Watch 3的四到五倍。 圖 Apple Watch 3。來源:蘋果 TrendForce預估,光體積變化描記圖法市場產值將從2019年的3,810萬美元,成長至2020年的6,333萬美元,年成長率66.2%。而PPG產品設計將從光學感測元件(Discrete)逐漸轉往模組化,提供品牌廠商更簡單方便且誤差更小的感測零組件。PPG主要供應鏈包含歐司朗光電半導體 (OSRAM Opto Semiconductors)、光寶、DOWA、晶電、光鋐與光磊。 以產品發展來看,受到新冠肺炎疫情的影響,健康醫療領域更受重視,而智慧穿戴裝置本身就具備健康檢測功能,這也使得強化生理數據功能及精準度成為廠商的重要發展方向。例如Fitbit已在多款產品上推出血氧濃度變化檢測功能,並且與學術單位合作發展疾病前期預警功能;三星(Samsung)則在智慧手錶上提供血壓量測功能。除此之外,血壓和血糖也是品牌想積極切入的應用,預期將成為下一波裝置性能提升的重點目標。
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -