- Advertisement -
首頁 標籤 IP

IP

- Advertisment -

資料安全多層布建 MCU程式IP/本地數據不外流

本地儲存的數據分為兩類,一類是運行時執行的應用程式,另一類是運行期間使用的本地數據。應用程式包含製造商的知識或IP,因此設備製造商需要防範其知識被竊取、再利用或抄襲。數據通常儲存在設備上,可以傳輸到另一個相同的設備,並在其中進行更新,因為所有設備都具有相同的屬性。而本地數據會在最終環境中設置設備或在設備運行期間儲存。不同設備包含不同的數據,更新頻率通常高於應用代碼。保護這類數據的原因多半基於考慮設備用戶,因為數據中可能包含用戶環境的敏感資訊。儘管保護數據的動機不同,但保護數據免遭外部存取是這類型數據的強制要求。 聯網需求影響安全風險 裝置聯網與否對安全實施方案的級別選擇而言,是一個非常重要的問題。對於沒有任何連接、獨立運行的設備,發生的攻擊可能只會來自於直接的實體存取。雖然實體存取所帶來的風險,就製造商保護設備內部的IP而言,仍舊是個問題,但用戶數據則不容易受其影響,因為攻擊者通常無法直接存取設備中的數據。 下一級連接則是在本地封閉網路中運行的設備,它們不會連接網際網路,因此攻擊者必須先存取封閉網路,然後才能攻擊設備,但設備同樣需要抵禦外部存取,避免成為進入封閉網路的入口。最後是直接連接到網際網路的設備,它們需要最高級別的安全實施方案,因為潛在攻擊者不再局限於本地連接,而是遍及全球,攻擊力道無法估量。此外,這一類攻擊會越來越多。 依裝置聯網與否選擇安全應用類型 為了更具體地說明這個主題,以下假設一個完全虛構但足夠真實的案例,其反映真實應用的安全需求。以裝有指紋感測器的門鎖為例,透過刷指紋可以進入公司大樓的限制區域。這個感測器採用非常聰明的演算法,能夠在設備中儲存50個最常用的用戶指紋,而占用的記憶體極低。這是最能吸引市場客戶的特色。對於其他使用者,設備透過公司Wi-Fi網路連接到伺服器,對比已儲存指紋,需要更多時間才能准許進入,由此可見,內部儲存的數據是強大優勢。Wi-Fi網路還需要存取網際網路,才能接受製造商對設備進行無線更新。 作為設備製造商,必須設計一個確保應用安全的方案(圖1),而安全方案依照裝置是否有聯網需求可分為兩類。第一類要保護的數據是指紋演算法的IP。這是設備本身的價值所在,應防止任何攻擊者透過直接連接或數據連接存取設備。設備接入網路時,僅保護設備中的MCU免遭讀出、複製或重新程式設計是不夠的,必須同時保護IP,以免攻擊者連接記憶體後轉印IP。 圖1 設備製造商必須設計確保應用安全的方案 第二類必須注意的數據是用戶數據,即本例中的已儲存指紋和網路存取數據。如上所述,如果只能透過物理方式存取設備,攻擊者會更難獲取用戶數據。透過網際網路連接存取則更容易獲取數據,因此需要加強針對攻擊的安全防護,協助保護使用者數據及其網路,並且設備內部必須實施安全方案才能形成完整的安全設置(圖2)。 圖2 須加強針對用戶數據的安全防護 兩種IP保護級別 根據前述的範例,保護已儲存的數據有幾個安全前提。為了聚焦於數據安全,在假設所用設備具有安全措施的前提下進行討論。就IP保護而言,可以執行幾種保護級別,這取決於所選的安全方案和定義的保護範圍。首先,裝置中使用的MCU必須能夠防範不必要的偵錯存取和重新設計程式。實現這種關鍵保護的方法有很多種,需要對比不同的執行方法做出判斷。不同的供應商使用不同的保護方法,這些方法也具備不同的安全能力,選擇時須注意該方案不只防止裝置被意外篡改,且需確保安全。 下一級是使用能夠支援不同存取區域的MCU,可以是信任或不受信任的MCU,這樣可避免MCU的核心直接存取IP,防止數據輕易地被轉存。這一級別同樣有不同的解決方案。最常見的是可以用於上述目的的記憶體保護單元(MPU)方案或基於Arm微控制器的TrustZone方案。最後,以加密方式將IP儲存在設備上,可以加強物理攻擊的防禦,因為非揮發性記憶體中並沒有可讀數據的IP,無法透過封裝或電子顯微鏡分析來讀出IP。因此,儲存在MCU中的加密密鑰也必須防止讀出、從CPU直接存取,且加強安全儲存以避免讀出金鑰和加密IP,進而存取機密資訊。如果以加密形式儲存演算法,必須在設備RAM中解密和執行。這是儲存IP最安全的方法,但需要將儲存演算法的RAM納入MPU的可信範圍。 限制MCU存取/演算法加密 確認安全類型與IP保護級別後,需要考慮最終客戶儲存在設備中的數據安全。在前述範例中,已儲存的指紋數據能夠加速相應區域的存取,而且存取客戶網路時,有利於連接到儲存所有指紋數據的伺服器,這樣製造商也可以方便未來進行韌體更新。基本上,相同安全措施可以重複應用,因為該操作是針對設備中儲存的IP執行。進一步決定運行中的強制性安全實施方案級別,設備應防止數據讀出或程式重新設計,避免安裝任何透過網路向攻擊者提供數據的惡意軟體。此外,區分受信任和不受信任記憶體區域也很有幫助,因為這樣可以限制MCU存取記憶體數據的可能性,有助於提高攻擊難度並加強保護。 最後,數據加密是強制性措施,同時對性能產生負面影響。所有已儲存指紋必須先解密,演算法才能開始運算,因此須事先考慮外掛程式的性能影響。另一方面,直接接觸客戶大樓內的設備可能很難,如果這種外掛程式是強制性的,則需要考慮實體存取。只要攻擊者無法接觸此演算法,面對已儲存指紋數據的裝置就無計可施。如果透過網路存取的數據則不同,針對性能的負面影響幾乎為零,因為一天只需要運行一、兩次,但如果能直接接觸設備,以未加密數據形式讀取網路存取代碼,就能取得客戶網路的完整存取權限,造成無法預期的危險。另外須要強調,儲存加密密鑰時的安全級別必須高於數據本身,以避免對加密數據進行任何不必要的存取。 選擇可滿足安全需求之MCU 如何執行安全防護以及採用何種程度的安全方案,始終取決於應用、預期攻擊者以及攻擊者對受保護設備或數據的存取形式。這意謂著面對每種安全方案,開發團隊必須在專案初期就詳細考慮,決定哪種MCU能夠滿足所有的安全防護需要。未來隨著動態數據功能的增加或無線安全編程的發展,安全需求會越來越高。 (本文作者Markus Vomfelde為瑞薩物聯網和基礎設施營業單位資深經理;Brad Rex為瑞薩物聯網和基礎設施營業單位資深產品行銷經理;Zachary Ellis為瑞薩物聯網基礎設施營業單位資深行銷專員)
0

瑞薩採用晶心科技RISC-V 32位元CPU核心

瑞薩電子日前與晶心科技(Andes Technology)進行技術IP合作。晶心科技提供以RISC-V為基礎的嵌入式CPU核心,以及相關系統單晶片(SoC)開發環境的供應商。瑞薩選擇AndesCore IP之32位元RISC-V CPU核心,嵌入其全新的ASSP中,該產品將於2021年下半年開始為客戶提供樣品。 瑞薩採用晶心科技RISC-V 32位元CPU核心 晶心科技總經理林志明表示,MCU供應商瑞薩電子已經將晶心的RISC-V核心設計到其預燒錄的特殊應用標準產品中。瑞薩和晶心都有相同的願景,就是RISC-V將成為SoC的主流CPU指令集架構(ISA),並欣然迎接RISC-V時代。這不但是晶心科技代表性的里程碑,也代表開放原始碼RISC-V ISA作為主流運算引擎時代的來臨。瑞薩的客戶將會得益於為21世紀運算需求而建構的現代化ISA。 瑞薩物聯網與基礎設施事業部執行副總裁兼總經理Sailesh Chittipeddi則認為,晶心科技的RISC-V核心IP,提供可擴展的性能範圍,可選擇的安全功能,以及客製化的選項,讓瑞薩能夠對未來的特殊應用標準產品,提供創新的解決方案。客戶如果正在為現有或新興的應用產品,尋找經濟的替代方案,就會因此而得益於上市時程縮短與開發成本降低。 瑞薩以RISC-V核心架構為基礎的預燒錄設計ASSP晶片,在交貨時還結合專用的使用者介面工具,來設定應用產品的可程式參數,可提供客戶完整、最佳化的解決方案。這項功能可消除初期對RISC-V開發和軟體的投資障礙。此外,由瑞薩在各地具有特殊專業知識的合作夥伴所組成的大規模網路,將可提供集中化的客戶支援。
0

天時/地利/人和俱足 開放處理器來勢洶洶

在摩爾定律逐漸走向尾聲,處理器效能提升速度趨緩的情況下,為了榨出更多效能,以滿足人工智慧(AI)等應用對運算能力的需求,晶片設計者開始在主流的處理器IP之外,探索其他的可能性,例如異質運算、異質整合封裝概念的興起,都與CPU效能成長趨緩,有著密不可分的關係。 領域專用運算架構(Domain Specific Architecture)的觀念,為許多IC設計團隊帶來新的靈感。在標準處理器之外,利用客製化的指令集跟邏輯電路,提高特定某幾類運算任務的執行效率,以便讓處理器在功耗、晶片面積沒有大幅增加的前提下,執行特定任務時能有更高的效能,是領域專用運算架構的核心概念。而開放式CPU架構具有自由、可擴充等特性,正好與領域專用運算架構的想法一拍即合,也促成RISC-V在短時間內爆紅。 開放架構處理器的概念並非RISC-V首創,自2005年起,產業內便曾陸續提出OpenSPARC、OpenRISC、OpenCores等開源指令集架構,但始終面臨相關生態系不易建立,難以受到市場廣泛採用的難題。直到2010年加州柏克萊分校的Krste Asanović教授在其實驗室中開始一系列的開放原始碼研究,RISC-V即是他的RISC CPU研究計畫中的一項。隨後2015年,RISC-V基金會在瑞士成立,以非營利組織的形式推動RISC-V生態系進展,才奠定了RISC-V的基礎。 柏克萊掛保證 RISC-V成功引起產業興趣 晶心科技(Andes)技術長暨執行副總經理蘇泓萌(圖1)提及,柏克萊大學原先為了教學目的而開發出RISC-V,而柏克萊大學作為電腦科學人才培育的重鎮之一,其響亮的名聲,是初步吸引廠商對RISC-V產生興趣的原因。 圖1 晶心科技技術長暨執行副總經理蘇泓萌 與其他的開源硬體相比,RISC-V具有兩方面的優勢,一是簡單易學,二則是良好的商業模式。原本就是為了教學而發展出來的RISC-V,跟其他主流CPU或開源CPU相比,很容易學習上手,有些比較年輕的工程師,很可能在學生時代就已經接觸過RISC-V,因此開發團隊的培養、建構,跟採用主流CPU架構開發晶片相比,難度比較低。而商業模式方面,RISC-V是開源硬體,開發者不用支付授權費、權利金,免於承擔龐大的資金壓力,也讓許多廠商更願意嘗試在晶片中採用RISC-V架構。 SiFive總裁暨執行長Naveed Sherwani(圖2)則從天時、地利、人和的角度,來分析RISC-V快速竄起的原因。在人和方面,Sherwani的觀點與蘇泓萌類似,認為從學術教育需求中誕生的RISC-V,其單純易學、容易客製化的特性,讓RISC-V在推廣時占了很大優勢,這也讓半導體大廠與EDA工具業者看到RISC-V的發展潛力,進而提供支持。這是其他開源或可組態(Configurable)CPU所不曾享有的待遇,也是RISC-V聲勢快速上漲的原因。 圖2 SiFive總裁暨執行長Naveed Sherwani 各國追求半導體自主 RISC-V來得正好 至於在地利方面,由於國際政治的對立加劇,許多國家都需要在談判桌上累積更多籌碼,而半導體作為重要的戰略物資,自然是各國爭相投入扶植的產業。事實上,SiFive在2019年曾經在埃及、巴基斯坦等根本沒有半導體產業的國家舉辦RISC-V論壇,結果動輒吸引數百人、上千人出席,原因也在於各國都想要在半導體領域掌握一定的自主權。對於沒有半導體或資訊科學基礎的國家來說,RISC-V是一個很好的起點。 中國為了追求半導體產業自主,在RISC-V上所投入的資源,更是不在話下。近期中國開放指令生態聯盟才剛舉行CRVS 2020研討會,會中探討了中國RISC-V生態系的未來發展方向,以及中國本土業者在RISC-V處理器設計、驗證、矽智財(IP)與軟體工具等的發展成果,顯示中國有很強烈的企圖心,欲利用RISC-V創造出屬於自己的處理器生態系統。 摩爾定律走向尾聲 運算效能提升要靠客製化 而在天時部分,摩爾定律的進展趨緩,導致處理器效能提升速度大不如前,加上AI應用蓬勃發展,都使得晶片業者必須設法在既有的CPU架構外另闢蹊徑,以滿足客戶對運算效能的需求。 Sherwani就指出,如果處理器的效能提升速度,還能保持十多年前的水準,業界恐怕不會對RISC-V產生這麼大的興趣,因為標準CPU就能滿足應用需求,就算有些電晶體閒置不用或工作效率不彰,對晶片公司跟使用者來說也無所謂。但在摩爾定律走向尾聲,客戶對運算效能的需求卻因為AI暴增之際,晶片業者必然要想辦法讓處理器上每個電晶體都能發揮到極致。針對特定應用進行客製化設計,則是實現這個目標必然要走的路。 蘇泓萌也認為,RISC-V的發展,跟AI有很密切的關係,當AI應用不斷更新,以聲音、人臉辨識與資料中心為主的應用發展比通用的處理器開發更快,須要彈性靈活的解決方案,允許客戶自行修改指令集,才能透過硬體加速滿足AI的效能需求。 應用廣泛的RISC-V便是AI加速的解決方案之一,藉其彈性修改的特性,可依照不同客戶的需求客製化處理器,縮短產品從開發到上市所需的時間。目前RISC-V架構以中低階產品為主,並以美國及中國發展最快。未來RISC-V將走向高階產品,同時持續與學界合作拓展整體生態系。 生態系建立仍為RISC-V最大考驗 基於精簡、可擴充、易於客製等優勢,讓許多廠商對RISC-V躍躍欲試。具代表性的科技公司如英特爾(Intel)、三星(Samsung)及高通(Qualcomm)三大廠商皆對RISC-V處理器IP/解決方案商SiFive投入資金;而聯發科除了是RISC-V基金會的成員之一,也是晶心最大的股東,令市場更加看好RISC-V的發展前景。面對處理器開放架構應用的討論,處理器大廠Arm則選擇部分開放自家處理器架構,因應日益增加的客製化需求。 主流的處理器IP與開放式架構兩陣營各有支持者,而RISC-V架構的出現,提供處理器設計人員在現有IP之外,另一個更具彈性的選擇。基於開源的核心宗旨,RISC-V的開放性可加速創新。然而硬體架構仍須搭配編譯器與軟體工具支援,才能發揮其作用。因此RISC-V的挑戰便在於建立一套完整的支援系統,藉由建立生態系來穩固市場定位,期望未來與主流處理器並駕齊驅。 為了建立RISC-V生態系,學界與業界人士成立基金會共同推動,RISC-V社群中的處理器廠商之間除了各自的策略布局,同時反映了半導體產業的競合關係。蘇泓萌表示,RISC-V社群的廠商間呈現合作性競爭(Co-opetition)關係,競爭對手與合作對象間並沒有明顯的界線。生態圈中存在競爭,但是上下游廠商,甚至競爭對象還是可以合作把餅做大,透過互相支援拓展RISC-V生態系。
0

新思針對台積5奈米製程推IP組合 加速高效運算SoC設計

新思科技(Synopsys)近日宣布,針對運用於高效能運算系統單晶片 (SoC)的台積公司 5奈米製程技術,推出業界廣泛的高品質 IP 組合。應用於台積公司製程的DesignWare IP組合內容包括介面IP(適用於業界最廣泛使用的高速協定)和基礎IP,可加速高階雲端運算、AI加速器、網路和儲存應用SoC的開發。新思科技DesignWare IP 與台積公司 5奈米製程的結合,可協助設計人員掌握設計在效能、功耗和密度的嚴格要求,同時降低整合風險。 台積公司設計建構管理處資深處長Suk Lee表示,我們與新思科技長期合作為我們雙方的客戶提供了基於先進製程技術的DesignWare IP,令客戶面對高效能運算等各種市場時能達成一次完成矽晶設計(first-pass silicon success)。基於台積公司先進製程技術的廣泛DesignWare IP組合,可協助設計人員快速地將必要的功能融入設計中,同時受惠於先進晶圓代工解決方案 、也就是5奈米製程技術,所帶來的強大功耗與效能的提升。 新思科技IP行銷策略資深副總裁John Koeter則表示,近二十年來,新思科技的DesignWare IP一直走在業界前端,基於台積公司的每一代製程技術實現無可比擬的功耗、效能和面積表現。藉由提供基於台積公司5奈米製程技術的業界廣泛的介面和基礎IP組合,新思科技協助雙方客戶加速高效能運算SoC的發展。
0

萊迪思新AI解決方案提升網路終端應用效能

萊迪思半導體(Lattice)為低功耗、可程式化設計元件的供應商,日前宣布推出Lattice sensAI 3.0,為用於網路終端設備AI處理的完整解決方案集合的最新版本。該版本現支援CrossLink-NX系列FPGA,可打造低功耗智慧視覺應用,更擁有客製化卷積神經網路(CNN)IP,此靈活的加速器IP可簡化一般CNN網路的實現,經優化後可更加充分利用FPGA的並行處理能力。經由增添對CrossLink-NX FPGA的支援,Lattice sensAI將為監控/安全、機器人、汽車和運算領域的智慧視覺應用帶來功耗和效能上的再次突破。 為了解決數據安全、延遲和隱私等問題,開發人員希望將智慧視覺和其他AI應用所仰賴的AI處理任務從雲端轉移到網路終端。大多數網路終端設備都靠電池供電,或對功耗較敏感,因此開發人員需要各種硬體和軟體解決方案,不僅要能夠提供AI應用所需的處理能力,還要盡量降低功耗。通過增強版sensAI集合,萊迪思將持續為客戶提供更多功耗和效能的優化方案選擇。對於智慧視覺等AI效能要求較高的網路終端應用而言,運行sensAI軟體的CrossLink-NX FPGA相較之前版本提供翻倍效能,同時降低一半的功耗。
0

重視智財保護 智慧電網有錢景

為了達到2025年再生能源占比達20%的國家能源政策,台電近年來積極推廣智慧電網,希望能夠透過智慧電網的即時監控特性,有效克服再生能源的間歇性,達到穩定供電的目的,因此陸續完成Advanced Metering Infrastructure(AMI)智慧電表和智慧變電所等硬體設備建置。 在用戶端部分,台電已經針對工商用電大戶布建了25000具高壓型智慧電表,並預計在2024年完成300萬具一般住商用電戶使用的低壓智慧電表,屆時透過智慧電表連結智慧電網的用電量預估可達八成以上。可別小看了這一顆智慧電表,它可以精準並即時顯示當下的用電量,並透過通訊網路傳回台電內部的電表資料管理系統MDMS(Meter Data Management System),用戶可以依據自己的用電情況來調節家中用電,同時讓台電清楚掌握各時段的用電資料,推廣時間電價,平抑尖峰用電、達到供需平衡,若是發生停電,智慧電表也能瞬間回報訊息,縮短檢修、復電的時間,在開發智慧電表的過程中,也牽涉到許多獨有的技術或解決運用方案,在評估過後也已經著手申請專利。 智慧電表讓生活有無限的可能 智慧電表的應用更是未來智慧生活不可或缺的一部分,透過家庭能源管理系統HEMS(Home Energy Management System)搭配智慧插座、智慧家電的運用,可以根據時間電價自動化設定、調控家電設備,就算不在家,只要透過手機App,一機在手就可以隨時監控家中狀況,立即掌握所有異常狀況,在日本甚至已經可以發揮一部分長照的功能,透過通訊設備掌握老人在家的活動情況,發生異常用電情況可以在第一時間通報相關人士或機構;甚至更進一步結合水、電、天然氣的使用習慣,繪製出使用型態,如果型態有變,則發出異常示警。 ▲ 右╱台灣電力公司綜合研究所所長鍾年勉、左╱副所長沈德振。 台電發展智慧電網的總體規劃方案中,包含了智慧調度與發電、電網管理、儲能系統、需求面管理、資通訊基礎建設、產業發展和法規制度等七大分類,其中牽涉到發電、調度、輸電、配電和售電等層面的技術運用,不論是研究或事業單位,隨著技術持續演進、突破,也衍生出許多智慧財產法律及市場面的問題,需要專責單位負責專利相關問題,台電過去也曾發生自行研發的技術被合作廠商擅自運用在其他專案或付費購買的技術卻反被控侵權等等案例,因而在2016年成立智財課(IP Office),負責包括智慧電網發展等全公司整體智財維運、法律諮詢、專利技術研析相關業務,此舉獲得專利師公會胡書慈專利師高度肯定。 專利保護≠商機 搶先註冊才是贏家 台電目前在智慧電網的領域已經取得42項專利,而領域則遍及智慧電網的SGI七大指標(註),在創新技術博覽會發明競賽和Asian Power Awards等國際競賽也有傑出表現,未來智慧電網結合人工智慧、大數據和各項設備等,將產出許多有用的資訊,在離岸風電、光電等再生能源監測、併網、調控技術上,也勢必有突破性的發展,必須透過智財保護的機制,以授權或合作開發的方式輸出,才能為企業爭取最大利益。 ▲ 專利師公會與談人胡書慈。 胡書慈專利師指出台電的智慧財產整體布局明確,透過教育強化員工的智財保護觀念,配合專利師主動出擊,從研究計畫和台電工程月刊中發表的技術中尋找符合申請專利的技術,輔以獎金鼓勵員工申請專利或將研發成果商品化,非常值得其他企業效法,不過胡書慈專利師也提醒相關研究或專利人員,研究技術必須在公開之前就申請專利保護,舉例來說,離岸風電是目前台電智慧電網發展中很重要的一環,未來若是打算將相關技術輸往其他國家,建議先到日本、菲律賓、英國這些有發展離岸風電潛力的國家申請專利保護,也就是說雖然在美國申請專利是專利技術申請的一項里程碑,但還是要視每個國家的條件評估,像水力和風力等氣象預測技術,應該選擇和台灣一樣海島型或有大型離島的國家申請專利,才能提高商品化的可能性。 ▲ 台電綜合研究所於2016年成立智財課(IP Office),負責智慧電網發展等全公司整體智財維運、法律諮詢、專利技術研析相關業務,此舉獲得專利師公會胡書慈專利師高度肯定。 註:智慧電網發展指標(SGI)是新加坡SP集團建立的智慧電網發展評估架構,包含資料分析、分散式能源整合、綠色能源及電網安全、監測和控制、供應可靠性、客戶自主性及滿意度等七大構面。
0

擴大扶植晶片新創公司 Arm推出Flexible Access計畫

Arm日前推出針對新創公司設計的Arm Flexible Access新創版計劃,此提案讓晶片新創公司以零成本的方式取得Arm的矽智財(IP),以及全球性的支援及訓練資源,協助新創公司推出晶片產品與擴大商業規模。          圖 Arm推出針對新創公司設計的Arm Flexible Access新創版計劃。來源:Arm             根據此一計畫,符合資格的新創公司不需要預先支付任何費用,就能使用各種 Arm 矽智財,包含產品開發週期的每一個環節,都能運用各種解決方案進行實驗、設計與開發原型產品。Arm定義的創業初期是籌資不超過500萬美元的新創公司。除了IP的使用權外,符合資格的新創公司也可利用由晶片設計人員、軟體開發人員、支援、訓練與工具組成的生態系統,補強團隊內部既有的技能與經驗。 Arm在2019年推出Flexible Access計畫,讓合作夥伴們在支付年費後,可立即使用各種科技產品帶動成長動能,至今已有超過40個客戶完成註冊,涵蓋的領域包括物聯網、終端裝置AI、自駕車與穿戴式醫療裝置,已有數百家公司利用方案內的技術取得成功,包括AI晶片廠Hailo,與半導體公司美商謀思科技(Atmosic)等。 在推出Flexible Access新創版計畫的同時,Arm也宣布與育成公司Silicon Catalyst達成戰略夥伴關係。日後Silicon Catalyst的會員可以免費取用 Arm的IP、電子設計自動化(EDA)工具與原型晶片,降低會員公司的營運成本。
0

糖尿病管理系統智慧/效率兼具 血糖儀設計BLE建功

測量和監測是對1型糖尿病和2型糖尿病有效管理的關鍵。典型和傳統的測量技術透過使用血糖儀(BGM)進行。市場上1型和2型糖尿病患者使用的另一種技術選擇是連續血糖儀(CGMS)。連續測量的優點很多,其中之一是更瞭解人體,或者隨著時間推移,血糖如何藉由各種日常活動,如體力活動、飲食甚至睡眠不斷變化。隨著持續而非間歇式更深入瞭解人體行為,可進行相應治療和改善。 由於這些儀器通常在皮下測量組織液,直到最近還需定期校準血液,也就是「老派」的戳手指。然而隨著技術進步,部分CGM現在毋需對全血進行校準。 連續血糖監測系統的微電子性質通常相同,僅有少數例外。且由於這些裝置通常為穿戴式,因此尺寸問題亦須顧及,意味著需要高度整合加上有效電源管理,以提高所用半導體元件的最佳效能。 除了測量和監測外,胰島素輸送技術也在推進,閉環系統將連續監測結合藉由人造胰腺輸送的胰島素,為數以百萬計的糖尿病患者帶來更好、更方便的醫療保健及更樂觀的前景。 血糖測量技術層層遞進 傳統的BGM可以在藥房或任何藥店連鎖店購買。使用附帶的刺血針裝置(非常小的細針)刺破手指、流出一小滴血,再將血與插入血糖儀的試紙接觸。 當血液樣本與試紙產生化學反應時,會向血液樣本施加AC或DC激發電壓或電流,而結果由數據轉換器讀取。短暫等待微控制器完成計算後,最終的血糖水準將在螢幕上顯示(圖1)。 圖1 簡化的血糖儀(BGM)框圖 更先進的血糖儀具有藍牙低功耗(Bluetooth Low Energy, BLE)連接功能,可將分散的血糖結果傳輸至智慧手機,其通常支援雲端連接的應用程式。而結果可予以儲存,且家庭成員或護理人員可隨時查看,以改善治療效果。 CGM電路系統/電池選擇考量因素 當今,連續血糖儀的系統架構將類比/數位(A/D)和數位/類比(D/A)以及輸入/輸出功能整合到單片矽中,通常是特殊應用積體電路(ASIC)類比前端(AFE)或專用標準產品(ASSP),通常在一個小的晶圓級晶片尺寸封裝(WLCSP)中結合1個藍牙低功耗(BLE)和微控制器(MCU),如RSL10有助於解決挑戰,使長期穿戴的裝置對用戶來說盡可能不顯眼和實用。 除了電路外,另一個影響尺寸的主要因素是所需的電池。如掌上型BGM中,通常使用一個或兩個AA、AAA或AAAA電池。這些對於CGM而言太重且太大,因此,電池的尺寸和化學性質通常決定鈕扣電池的外型尺寸。 為了切實可用,必須審慎管理系統電源。峰值電流和總電流必須最小化,因為從鈕扣電池獲得的最大電流比AA電池大大減小。另一個考慮因素是放電曲線。如若使用氧化銀化學電池,通常會產生最大1.55V的電壓,使用壽命降至1.2V;若使用二氧化錳化學電池,則額定電壓為1.5V,使用壽命降至1.0V。 胰島素注射趨向智慧化 胰島素以往是在需要時使用臨床級注射器和針頭自行注射,就像在診間接受注射一樣。現在有很多種胰島素已經上市銷售,快速、短、中、長效類型的胰島素可以單獨注射或根據需要混合使用。 最近皮下注射的替代品已進入市場。有一種替代方法是噴射式注射器,其以細流將胰島素輸送並進入皮膚。另一種是注射器筆,藉由一根超細針頭自動分配胰島素,使利性和舒適性大幅提升,同時還能減少注射恐懼感(圖2)。 圖2 智慧注射器筆架構示意圖 這些替代裝置實際上更趨於機電化和「智慧化」,就如同傳統血糖儀。至於注射筆的設計採用微控制器和藍牙低功耗無線電,目的是捕捉和報告離散的注射時間、注射量等等。 胰島素泵浦改善輸送效率 胰島素泵浦可精確控制1型和某些2型糖尿病患者的胰島素輸送,但更常針對1型糖尿病患者。這些泵浦是方案的關鍵部分,最終在「閉環」系統—人造胰腺中發揮作用;其採用胰島素泵浦接收連續測量血糖數據的系統,再加上適當輸送控制和演算法創建人造胰腺,此為糖尿病管理的關鍵。 使用CGM代替多次刺手指,這是一種利用連續數據而不是幾個離散數據點的較佳測量方法。同樣地,能避免一整天低血糖和高血糖是一大進展,有了人造胰腺意味著患者不再需要擔心夜間低血糖、睡眠期間低血糖水準或測量/注射的頻率。這可以大幅改善他們的健康、生活品質,還可能延長壽命(圖3)。 圖3 簡化的胰島素泵浦系統圖 合理想像,採用自動輸送胰島素需要依靠系統的安全性、可靠性和準確性,這使得裝置製造商於選擇技術、系統和元件供應商的過程至關重要。 人造胰腺連結雲端監測健康 人造胰腺的物理設計有很大差異,儘管戴在身上或配置在使用者的皮帶上。圖4所示架構描述常見的方案,利用高度整合的ASIC,含所有類比前端模組、電源管理、MCU或控制模組以及一個整合的藍牙低功耗無線電以幫助通訊。所有系統都包括某種類型的胰島素儲存裝置,提供適當驅動器機制的泵浦或致動器系統,藉由皮下針頭輸送胰島素的導管或套管系統,以及各種類型的感測器(如運動、壓力、溫度、血糖)。離散或未連接的測量系統主要區別,在於連續和閉環回饋。 圖4 人造胰腺圖 除了血糖感測器以外,還可以使用幾種感測器,如用於人體穿戴裝置的低重力加速度計和溫度感測器來監測活動水準,以改進劑量演算法。這些感測器持續提供有關身體運動和外部環境的資訊,同時還提供有關血糖水準的相關資訊。人工智慧(AI)可用來估計所需的近期和中期胰島素治療。 大多數系統使用藍牙低功耗與連接到雲端的智慧手機進行通訊。但有些人使用無外觀設計的可攜式Pod與單獨的控制系統,亦稱為「個人裝置管理器(PDM)」的系統通訊,在此情況下,PDM用於用戶間交互作用,並可作為開環(非閉環)控制系統,其亦通常藉由Wi-Fi或LTE提供雲端連接的功能。 藉由雲端連接,護理人員可收到通知並介入追蹤。此外,藉由雲端運算,可從大數據分析和人口管理獲得更多的功能。而在某些情況,除IC整合外,甚至被動元件也與高度整合的半導體ASIC整合在3D混合模組中,體現尺寸、重量和性能等優勢。 低功耗藍牙供電 實現高效傳輸 回到對鈕扣電池運作和低功耗工作需求,諸如安森美半導體(ON Semiconductor)的RSL10藍牙5認證的無線電系統單晶片(SoC)之類的元件可提供適當選擇方案實現與人造胰腺方案的通訊。 RSL10提供低功耗,經嵌入式微處理器基準協會(EEMBC)驗證,且近期獲用於可植入式及生命相關的醫療應用認證,適用於低功耗電池供電的裝置;該元件搭載Arm Cortex-M3處理器和LPDSP32數位訊號處理器,提供所需的穩固性以支援複雜設計;板載384KB快閃記憶體和160KB RAM為用戶提供靈活的編程選項。此外,RSL10還為藍牙低功耗提供機會,並具有開發韌體空中升級(FOTA)應用程式的能力(圖5)。 圖5 RSL10系統框圖 此外,該元件具備額外好處,如安森美的藍牙低功耗矽智財(SIP)可用於低功耗的ASIC,進而滿足涵蓋各感測器和介面的需求。由於測量系統和胰島素輸送系統中的數位/類比(D/A)和類比/數位(A/D)轉換很普遍,因此需客製化,像是在胰島素輸送系統中,可能僅需藍牙低功耗傳輸,進而減少基頻RF和控制器成本。許多應用皆為大體積或一次性,因此關鍵在於矽,需盡可能使其具高效能以節省成本和尺寸。 (本文作者為安森美半導體無線及醫療分部訊號處理業務行銷)
0

智原於聯電製程推28G SerDes IP解決方案

聯華電子(UMC)日前表示,智原科技(Faraday)的28Gbps可編程SerDes PHY現已可在聯電的28奈米HPC製程平台上選用。聯電的28HPC製程有利於高速介面設計的需求,因此採用該28奈米28G SerDes可以大幅縮短晶片設計週期,將有助帶動100G高速乙太網路、PCIe 4.0、5G與多數xPON光纖網路基礎設施的發展。 智原科技研發處長Andrew Chao表示,28G SerDes PHY是現代工業和網路系統的關鍵元件。藉由聯電28HPC製程技術,客戶可以獲得良好的系統性能和成本效益,以及聯電和智原的全面技術支援。期待在不久的將來能夠協助客戶進行更多的有線和無線網通系統開發工作。 該SerDes解決方案具有可編程架構,並符合CEI-25G-LR規範,可於長距離電纜上支援高達25Gbps的數據傳輸速率。另外也支援25G/100G乙太網路、PCIe Gen1-4和JESD204B/C等多項主流介面規格。此IP也是支援xPON應用的28G SerDes解決方案。 聯電矽智財研發暨設計支援處林子惠處長也表示,隨著智原28G SerDes PHY的成功開發,讓客戶在該公司具有競爭力的28奈米平台上,得以擴展他們在高增長數據通訊應用中的機會。藉由聯電經驗證的28HPC製程技術、堅實的28奈米製造能力和豐富的設計支援,我們為採用智原的SerDes IP之晶片設計人員創建了精簡而穩健的量產途徑。
0

Maxim IoT MCU內置ChipDNA PUF金鑰護聯網安全

Maxim日前宣布推出MAX32520 ChipDNA安全Arm Cortex-M4微控制器,是首款內建物理反複製技術(Physically Unclonable Function, PUF),並符合金融及政府應用要求的安全微控制器。Maxim的PUF技術提供多層保護,是先進的高成效金鑰保護方案,可廣泛用於IoT、醫療健康、工業和計算系統。 Maxim Integrated微處理器及安全產品事業部執行總監Kris Ardis表示,IoT系統所面臨的攻擊技術變得越發複雜,每天都有系統攻擊工具從學術界流入開源社群。基於ChipDNA架構的MAX32520向前邁進堅實的一步。基於先進的金鑰保護技術專為IoT應用而設計,有效保護資料和IP,協助設計者抵禦未來系統威脅。 IoT市場在保持連續成長的同時,大量設備被安裝到不受管控的區域,甚至具有潛在風險的環境下,使其更容易受到物理攻擊。而這些攻擊比一般的金鑰破解、預設密碼攻擊等軟體篡改更具威脅性。設計者希望為一些關鍵資料及操作提供更強大的系統防禦能力,以防止金鑰洩露可能造成的網路癱瘓、公司名譽受損以及財產損失,甚至是對人類生活產生的負面影響。 基於ChipDNA的MAX32520透過其PUF技術提供多層保護,採用先進的金鑰保護技術為加密操作提供最安全的金鑰。元件使用防篡改PUF金鑰進行快閃記憶體加密,安全導入功能支援信任根和串列快閃記憶體模擬。此外,當系統遭受惡意攻擊時,PUF金鑰固有的物理防護功能無需電池即可主動銷毀金鑰。迄今為止,即使最安全的保護方案也需要在電池供電的前提下才能實現此高等級的金鑰保護。
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -