- Advertisement -
首頁 技術頻道

技術頻道

- Advertisement -

波形更新/觸發/長時記錄面面觀 數位示波器驗證/除錯迎新機

類比式示波器在過去有著無與倫比的真實波形呈現,讓工程師們特別喜愛它的快速波形,但其無法穩定觸發與儲存波形的限制;隨著電子產品的進步與報告量的增加而來的便是數位儲存式示波器被廣泛的使用。然而雖然數位式示波器有著良好的功能如多種觸發方式、自動量測、儲存介面與電腦連線到創新的PC base架構,但是其無法即時呈現真實的波形卻讓工程師們在驗證除錯上耗費更多時間。 現今各家廠商在頻寬,即時取樣率與紀錄長度外,提升垂直解析是各家廠商在數位即時示波器上爭相研發的目標,其目的是希望藉由提高波形解析(分辨率)來達成示波器精準測量的效果,高解析扮演著重要的精準量測的角色。 數位示波器強化精準量測 一般而言,一部好的示波器必須具備: 1. 良好的頻率響應,在-3db定義下,必須保證足夠的頻寬。業界以3~5倍頻為基準。 2. 即時取樣,提供4~10倍取樣頻率達到訊號完整性。 3. 記憶深度,長時間有效擷取訊號不失真,支援歷史回放完整記錄波形。 4. 波形更新率,每秒高達數萬到數十萬次的波形更新率,真實快速呈現異常訊號。 5. 低雜訊與抖動,提供數位觸發系統確保示波器本身低雜訊與準確觸發,並提供可調濾波功能。 6. 高位元的呈現使得量測波形不隨著垂直刻度的變化而造成量測值的誤差。 7. 自動量測與統計。 8. FFT與通訊訊號分析工具。 9. 具備高解析模式測量鏈波與小訊號。 10. 簡單易學的操作介面。 11. 提供多功能自帶電表、訊號產生器、資料紀錄儀、頻率響應分析等。 高解析/長紀錄/波形更新加速驗證及除錯 高解析、長紀錄與波形更新率是新一代示波器加速工程師驗證與除錯的一大創新,使得示波器在測量小訊號時擺脫傳統示波器的馬賽克效應,並呈現最佳波形。例如量測儀器廠商OWON的XDS系列導入12/14位元硬體類比數位轉換器(ADC),精度是市場上其他示波器的16/64倍,可以觀察到低至31.25μV/div的訊號(圖1)。 圖1 12/14位元ADC與Zoom功能 傳統數位示波器採用的是8位元的ADC,其垂直分辨率為1/28。高精度示波器採用硬體12/14位元高速ADC,其解析度為1/212,比8位元示波器高出16倍,能展現更完整還原訊號真實情況,展現更多波形細節(圖2)。用8位元示波器和12位元示波器測量相同的200mVpp訊號。正常採樣時看,兩者區別很小。但暫停放大觀察時,兩者的區別就十分明顯。因此12位元示波器比傳統8位元示波器能夠捕獲更多的波形細節就是關鍵。 圖2 8bit馬賽克效應vs 14bit 透過高解析示波器捕獲訊號的真實情況,可更清楚地觀察大電壓訊號範圍中的小電壓訊號。除此之外,12位元示波器還能夠檢測到更小的訊號波動情況(圖3)。 圖3 高解析度的12位元示波器可以捕捉更多訊號細節 示波器垂直解析度通常為8位元,但實際上真正有效被應用到的有效位元一般在3~4位元左右,所以傳統數位示波器通常會教育客戶要將波形調整至接近螢幕的大小,或者盡可能的接近螢幕的3/4左右,此時的垂直解析度能有效的被運用。但是當工程師同時使用2個或4個通道時,被迫必須將波形縮小以利觀察訊號與量測,但是此時量測誤差已經出現,因此OWON提供12/14位元垂直解析度的選擇,量測波形不隨著垂直刻度的變化縮小波形而造成量測值的誤差,這是技術創新與高性能的表現(表1)。 表1  12/14位元垂直解析度選擇 不同頻率交替觸發便於觀測 觸發是示波器的關鍵功能之一,能夠捕捉到特定的訊號事件進行詳細的分析,並提供了一個穩定的重複波形。其在20世紀40年代發明以來,示波器觸發經歷了連續的創新。OWON提供了+-1ppm的時基精準度並且在不同頻率的波形量測下有效穩定交替觸發,為工程師提供觀測訊號便利(圖4)。 圖4 不同頻率下依舊可以進行量測 波形記憶深度攸關高頻訊號擬真 數位示波器是透過ADC將電子訊號以取樣點與正弦(線性)內插的方式將波形建立起來(圖5),並根據奈斯定理:取樣頻率為待測訊號頻率的兩倍為理論基礎。 圖5 數位示波器波形建立方式 當示波器長時間抓取訊號時,取樣率就會隨的時間變長而取樣率下降變低,當違反奈斯定理時稱之為失敗波形的還原或者稱之為贗頻。此時長時間紀錄就需要足夠的紀錄長度使得示波器能夠有能力抓取更高頻率的訊號而不失真。若以OWON XDS 40M取樣點在抓取100KHz的方波訊號,使用1MS/s的取樣率(10倍)(圖6),可以抓取30秒鐘(圖7)。 圖6 100KHz方波/1G高取樣/40M紀錄設定 圖7 數位示波器紀錄30秒波形不失真頻率準確量測 新波形紀錄/克隆技術掌握突發狀況 創新波形紀錄與克隆技術,其技術核心為錄製波形與紀錄,在複雜與危險的環境下紀錄波形以利後製處裡,隨時掌握關鍵突發波形與紀錄(圖8)。可配置電表作為更長時間資料取樣記錄儀使用。克隆資料擷取技術(Waveform Clone Technology),有別於傳統波形擷取儲存,高明的AD/DA技術(可內置訊號產生器),使得示波器在進行擷取突發或偶發以及觸發訊號時更準確的在重現波形與分析波形與雜訊的分析的一大利器(圖9)。工程師在驗證除錯過程中多了一個創新的選擇,革命性的改變解決了對傳統數位示波器無法解析細節反應與重現波形的詬病。 圖8 波形克隆與輸出 圖9 波形錄制與回放 EMI預測試落葉歸根為關鍵 現代的量測中基於電磁干擾測試的普及,EMI的先行測試格外重要,OWON在EMI的PRE TEST也不缺席並推出頻譜分析儀,運用示波器測試EMI行之有年但是如何回歸基本,是應用時的關鍵(圖10)。 圖10 利用示波器量測EMI 示波器不能取代電磁干擾測試儀,特別是在執行符合性測試,但它可以是一個良好的EMI測試和快速除錯工具。 數位協定驗證除錯於多領域普及 示波器回歸基礎還是以訊號的完整性量測為優先考慮,選對頻寬並搭配適合的探棒是一個關鍵。對於接地是否乾淨,是否有寄生電容,電感效應所產生的共振頻率,串音與否以及雜訊的干擾等都是量測時必須考慮的重要環節。近年來示波器的發展已隨著嵌入式系統的突飛猛進在各個領域中,如晶片設計、通訊、電腦、手機、汽車電子皆須使用示波器執行大量的驗證與除錯,此時多通道的需求應運而生。如OWON示波器提供解碼選項,五種基礎解碼I2C/RS232/SPI/CAN/LIN等滿足客戶在低速控制訊號的設計驗證與多通道的需要。 示波器在現代通訊領域的應用,使用雙通道X-Ymode里賽斯圖形觀察相位變化已經被現在工程師所遺忘,以示波器XY模式觀察相位差對於絕大部分工程師來說更是陌生,而OWON便提供X-Y Mode為設計基礎,加入I/Q Data輸入設定介面,使得從事通訊基頻的工程師得以輕易的使用示波器觀測星座圖(圖11),另一方面OWON投入新型任意波訊號產生器研發,推出頻率更高,內建數十種常用與特殊通訊與調製訊號波形,協助降低廠商產品驗證投資成本。 圖11 BPSK星座圖(使用OWON XDG作為訊號源) 頻率響應分析迎全新體認 為快速測量待測物在某一個頻率點的頻率特性,並快速解決電路元件測試而生。在示波器的基礎上配置訊號產生器來完成實現頻率響應分析的功能,使用示波器完成gain增益/phase相位量測變得相當容易(圖12)。 圖12 FRA頻率響應分析唯一階RC電路 本文希望透過新示波器面面觀傳達給讀者與示波器使用者對示波器的全新體認,並且在不丟失過去基本的量測理論上進一步強化新一代示波器所帶來的創新量測技術與革新。示波器的發展已經進入一個全新的領域,新的特性與多用途功能可以幫助工程師們節省時間,快速評估關鍵性的量測,達到更直觀的分析、簡單的操作以及豐富的配備。協助使用者輕鬆遊走在數位與射頻領域的驗證與除錯。 (本文作者為OWON資深工程師)
0

克服頻譜限制/拓展生態系 NB-IoT結合RSP開通全球網路

NB-IoT聲勢看俏 物聯網(IoT)正在快速成長中,根據2016年Machina Research的研究調查顯示,2025年以前全球預計將部署270億個聯網裝置。這些裝置都需要安全、可靠且無所不在的聯網功能,以便產生有價值的洞察力來驅動效率,並取得競爭優勢。要促成這些,蜂巢式技術不但具有理想的定位,也具有所需的擴充性;但有鑑於新的物聯網裝置與服務日益多樣化,人們需要新的蜂巢式技術以滿足特定的聯網需求。 NB-IoT是新興低功耗廣域網路(Low-Power Wide-Area Network, LPWAN)蜂巢式技術之中最頂尖的一種,可以滿足大量部署之低複雜性物聯網裝置對聯網連接性與日俱增的需求。NB-IoT技術以低廉的費用,提供較佳的耗電效率、系統容量與頻譜效率。NB-IoT由於設置容易,截至2019年3月止已有28個國家推出,並有超過40個國家的營運商已展開投資,可望對不同的相關夥伴,帶來各種的好處: 對於物聯網裝置製造商來說,相較NB-IoT與LTE-M,其為經濟性更佳的替代方案,原因是裝置複雜性降低,同時裝置製造與聯網成本也比較低;而對於管理大型物聯網部署的企業,它提供較低的成本、低功耗與簡單的協定。至於行動網路營運商(MNO),它與現有的3G與4G存取網路相得益彰,並可以整合進4G/5G共同核心網與BSS平台。此外,MNO也具有相當的彈性,可以選用可能的營運模式,善用他們的頻率分配資源。 以eSIM RSP遠端管理 通常最適合利用NB-IoT聯網的使用案例,都是為整個裝置群進行遠端監控、裝置是分離的並配有電池電力部署,且使用年限都超過十年。不管是固定或機動,此類物聯網裝置在它們的生命週期中,預計都會看到網路可用性或聯網供應競爭的改變。這意味永久綁定單一MNO的網路可能會有局限性,且容易受到未來聯網成本增加的影響。 變更電信網路是實現直接商業轉換的作法。不過它需要替換SIM卡,這對於擁有廣泛部署且觸及不易的物聯網裝置的擁有者,是個代價高昂的後勤惡夢。為了解決永久綁定單一MNO網路的SIM卡限制,全球行動通訊系統協會(GSMA)與電信業者合作將SIM標準化,讓轉換至其它電信網路時,技術人員不必前往裝置所在地進行實體SIM更換。 GSMA遠端SIM服務開通的規格帶來全方位的解決方案與安全架構,讓人們在所有支援eSIM的裝置上進行營運商設定檔的遠端管理。它伴隨而來的健全的認證與法規程序,可確保功能的可交互運作性,維持與確保網路存取的保護。 接下來檢視M2M RSP程序,以進一步瞭解讓RSP可在NB-IoT上運作的關鍵因素。欲構思具有RSP能力的NB-IoT裝置,表面上看起來似乎是簡單的任務,但其包含NB-IoT連接模組,以及一個GSMA認證且符合相關規格的M2M eSIM;隨後還要完成一些裝置保證與可交互運作性的測試。不過當整個程序進入到選擇蜂巢式元件的階段,就不見得那麼容易。 簡單來說,M2M RSP就是在eSIM裡進行交付,並管理營運商設定檔。RSP透過訂閱管理員-安全路徑(SM-SR)以現有空中設定(Over-the-air)的蜂巢式連接進行,使用的是開機即連的連接啟動設定檔,或是目前現行運作的設定檔。SM-SR會追蹤掌握eSIM的狀況,並握有與eSIM相關之必要的網路整合、密鑰與憑證,以便授權與執行設定檔管理事件。 一旦啟動之後,管理任務一開始會透過現用的設定檔網路,透過SM-SR與簡訊伺服器(SMSC)的整合(結合一個SMPP),傳送一個包含SIM資料的文字簡訊。成功收到這個簡訊後,卡片會執行指令,或是針對設定檔的下載事件,利用SM-SR建立嵌入資料通訊期,並藉此遞送該設定檔,隨後進行安裝與選項。任務完成後,不管最後成功與否,卡片與SM-SR彼此會交換進一步的應答訊息,以確保卡片設定檔的狀態保持同步。 NB-IoT漫遊仍具發展潛能 如果讀者針對全球性的裝置配送有企圖心,第一個絆腳石將是獲取使用在讀者eSIM上的啟動設定檔,它將透過全球性的NB-IoT網路範圍,提供無所不在的開機即時連接性。 要傳遞提供這些功能的設定檔,需仰賴落實廣泛的網路漫遊能力。倘若沒有漫遊,NB-IoT賦能的裝置將無法跨越各國邊境進行簡易部署。 由於NB-IoT還相當新,永續的漫遊環境與專為NB-IoT打造的完整架構,仍然有待建立。但是,筆者深信仍在發展中如下列示例,很快就會增加全球性的漫遊能力,而市場壓力也會迫使MNO專注加速此事。通常預期漫遊能力一開始會以策略性提供的方式,出現在同一MNO集團內的營運商或關鍵業者之間。不過,現今離實現還有段距離。 MNO正在試驗NB-IoT漫遊協定 沃達豐(Vodafone)與德國電信(Deutsche Telecom)於2018年完成第一個歐洲的NB-IoT漫遊試驗。他們針對包括電力節約模式(PSM)、長週期追蹤區域更新(TAU)等省電功能進行測試;同時於2019年,沃達豐與AT&T簽署了歐洲與美國間的NB-IoT漫遊協定(圖1)。 圖1 沃達豐與德國電信於2018年完成歐洲首個NB-IoT漫遊試驗 裝置須能處理多個NB-IoT頻段 使用NB-IoT的優點之一,是落實MNO時擁有頻譜的選項。當MNO在不同的頻段中運作時,漫遊的挑戰性更高。多頻段天線可以在每個裝置稍微增加一些費用的情況下,應付所有已定義過的頻段。而物聯網裝置製造商可能已經習慣針對單一頻段優化天線,現今隨著漫遊可能性的出現,人們需要更多強大的NB-IoT天線設計(圖2)。 圖2 多頻段天線可使裝置稍微增加一些費用的情況,應付已定義過的頻段 GSMA協會已進行可交互運作性測試 GSMA協會在2019年3月發表的行動物聯網漫遊測試中,針對NB-IoT的漫遊,定義了一整套完整的測試實例。由於測試案例並不知道控制面板與使用者面板的選項,因此他們可以測試所有施行項目,這些測試並不能取代合規測試,而是用來驗證漫遊能力(圖3)。 圖3 GSMA協會已於2018年針對NB-IoT漫遊進行交互運作測試 MNO超前部署NB-IoT三要素 除了沒有NB-IoT漫遊之外,在許多地方若要實際取得NB-IoT的訊號,存在頗高困難度,原因是網路營運商仍然處於擴展狀態,以及如何將此網路足跡商業化的階段。 在許多方面,NB-IoT看起來與實際感覺都與LTE十分相像。MNO可以在他們的網路上利用軟體升級進而支援NB-IoT。安全措施也具有類似情況,都需要同樣基於SIM的身分鑑定與流量加密措施。 在實際試驗中,沃達豐發現NB-IoT比起其它替代選項,更能穿透雙層的磚塊結構建築物。這對於不易觸及的地方,可以帶來更為可靠的感測器連線。NB-IoT可避免干擾與網路對撞,即便是利用單一的行動通訊基地塔部署10萬個裝置。 MNO正在加速推出NB-IoT GSMA協會的行動物聯網論壇追蹤了蜂巢式物聯網的發展進度。截至2019年10月止的資料顯示: ・89家營運商已經推出NB-IoT或正在進行中 ・NB-IoT與Cat-M1目前在52個國家獲得支援 ・相比之下,34家營運商已經推出LTE-M或正在進行中 儘管許多廠商宣稱他們已經部署了NB-IoT網路,他們還是不能對市場提出商業化提案;即便他們可以提出,但網路涵蓋範圍可能仍局限於某個區域內。此外,與2G/3G/4G網路不同的是,單一國家內的所有營運商都不能自我膨脹NB-IoT的部署,這意味已完成部署的營運商可以壟斷市場,而迫使他們調降費率的外部壓力則較小。 不過,針對問世只有三年的規格,各界採用的意圖已經相當明顯。這表示在全球各地的MNO眼中,物聯網龐大的商機貨真價實且持續長久。他們唯一的限制是交付的時間,這被認為是與較優先的5G競爭投資,爭奪工程技術空間。 因此,除非與MNO進行中的NB-IoT網路試驗聯合進行,任何試圖開發NB-IoT裝置的廠商想要讓產品成功推出,將很難獲取所需的連接性。 資料訊息/協定/可用性三者兼具 一如前文已經大致描述,大多數的M2M RSP的實施都需要文字簡訊與資料,才能藉此觸發任務,並進行管理。此外,裝置必須被喚醒並且可使用,以便接收伺服器的指令。 文字簡訊(SMS)的支援,在現有以消費者為中心的蜂巢式網路是已知的事實;且即使面對資料導向的通訊App崛起,它仍然占有穩定的流量。也因為其長期的支援,文字簡訊的支援能力被賦予期待。但是對於NB-IoT網路的部署,文字簡訊的支援並非必要元素,同時許多部署廠商已選擇不提供支援,以降低初始網路建置的工程複雜性,至少現在情勢是如此。 到目前為止,針對現今這種省略文字簡訊的情況,並沒有明確的跨界解決方法。此時存在數種可能性,但它們必須與物聯網裝置的使用案例合併考量。其中一種方法是支援額外蜂巢式技術,如LTE Cat M1,其中裝置可以切換過去,且文字簡訊可以透過它獲得支援,同時也可進行RSP。 在許多部署中,文字簡訊都符合NB-IoT裝置的使用型態:低成本、低耗電、長時間待機,以及短叢發式資料傳送。在NB-IoT網路與裝置上支援文字簡訊,為NB-IoT發揮完全的潛能,包括對RSP的支援與更高效率的資料傳送。在NB-IoT的使用案例中,更簡短、更高效的簡訊較理想,而且這不單只是針對RSP的設定檔管理。基於這個原因,GSMA協會的NB-IoT部署指南便努力遊說人們在NB-IoT網路中更廣泛採用文字簡訊來傳送資料。 許多IoT的使用案例是離開電網的,因此省電必不可缺,而這些裝置生命週期大多時間處於休眠狀況,只針對特定的活動才甦醒啟動。符合此情境的裝置對於RSP會構成問題,原因是若要執行任務,裝置必須被喚醒,才能接收採取行動的呼叫。文字簡訊通常會在SMSC上暫存一些時間,而MNO也不想無限期保留它們。隨著IoT的大量成長,與網路相關且休眠中的裝置數量也會增加;這些文字簡訊元件的長期儲存,可能會對容量帶來衝擊,並帶來與簡訊效度有關的問題。 現今尤其是針對RSP,任務的流程也必須讓觸發具有時間限制,以確保同步性與請求的即時性。在裝置處於待機狀態且不知何時才會重新上線的情況下,RSP伺服器面臨艱鉅的任務,且孤立無援。此類協助可能來自裝置部署者的編排平台,因為它可能知道裝置何時已重新上線,或具有邏輯以便預測何時會上線。若經細心編排,裝置部署者可以聰明指示RSP平台,只有在知道有可能成功的情況下,再開始進行任務。這個類型的方法可以提升系統效率,並節省成本。 NB-IoT為RSP蓄勢待發 人們現在已考量過支援M2M遠端SIM服務開通所需的NB-IoT網路與網路服務,因此最後要針對NB-IoT裝置與RSP,聚焦在蜂巢式模組的選擇策略,以及它們所需的支援。 通常模組製造商產品選項所包含的產品,會針對關鍵的目標區域提供最常見的無線電技術組合,以及相關頻段的支援。這些產品所支援的無線電技術選項往往遵循該區域網路演化的方向,藉此進行策略性挑選。以這種方式瞄準模組可帶來無線電的優化,並降低其頻率決定邏輯,以確保較低的價格。而在人們試圖取得來自業界與目標網路的產品認證時,它也可以提供協助。此外,亦存在提供全球性支援的模組,但它們只會瞄準較搶手的無線電技術組合,且往往價格會比較高,原因是它們必須結合額外的無線電調諧與優化邏輯。 因此,物聯網創新人員的模組選擇必須考量裝置的地理分配意圖,若是針對全球市場使用單一型號的裝置,或是可預期裝置必須在原本部署國家或區域以外的地方運作,那麼就必須考量規模更大的區域、甚至於全球的支援性。針對NB-IoT模組必須套用同樣的考量,然而不確定的網路策略與眼下極少的部署,讓製造商很難定義他們的產品選項。此外,有限的NB-IoT部署與支援,讓模組的研發更加棘手。 而SIM技術與支援的選擇,對於不同地區裝置的賦能也會造成影響。可移除的SIM雖然可以讓人們變更全球性服務營運商,但它需要針對無人看管的物聯網裝置進行保養,同時亦存在失竊的風險。 焊死的嵌入式SIM讓失竊風險降至最低,但會因此讓產品整個生命週期被聯網供應商綁定,並限制對漫遊協定的全球連接性,同時網外的服務品質不受管控。較理想的情況是,既能自由更換電信服務商,不必擔心需到裝置設置地點更換SIM卡與SIM失竊的風險,同時可得到較佳的行動網路服務。 若選擇具備GSMA遠端SIM RSP能力的嵌入式SIM,可以解決此一問題;不過,所選擇的模組也必須支援RSP。而蜂巢式模組若要支援RSP,除了提供標準語音通話與資料服務所需的例行支援,尚需包括一些關鍵功能。 這些在消費者手機裡使用的主流模組中,通常已經是標準功能。不過,談到針對物聯網裝置與使用案例的模組時,情況並不是永遠如此,原因是不必要的功能會增加成本。因此,無論物聯網裝置是針對那一家蜂巢式電信業者,倘若已經鎖定針對RSP提供支援,人們都必須對模組的能力進行適當的考量。正如ETSI的定義,對獨立承載協定(BIP)的支援是相當關鍵的一環,因為它確保數據機可以在SIM與RSP伺服器之間,建立起安全的資料通道,而全新的設定檔也可以藉此進行遞送。伺服器推送模式中對文字簡訊的支援也是必需的,以便告訴eSIM它必須執行一項RSP任務。 有關支援RSP裝置必須考量的另一個關鍵面向,則是確保允許RSP事件可以結束,這包括同步異動的傳送與接收。因此裝置必須確定它不會過早切斷與蜂巢式服務的連線,造成伺服器與卡片不同步,以及所申請的步驟最終失敗。 當一項技術才剛問市沒多久,正著手計畫以各種形式推出該技術的廠商有三個選項—隨著周邊支援逐漸出現,他們可嘗試努力成為第一個推出產品上市的廠商;或是可等待市場出現明確需求、更廣泛的支援與驗證過的可交互運作性後,再進行成熟的部署;同時,亦可選擇決定不介入市場運作。 NB-IoT結合RSP,將兩種新興技術帶到人們面前,但也讓遞送驗證過的元件更加困難,為想要整合兩者的廠商帶來衝擊。因此,若想要達成可行的產品,不能單獨埋頭苦幹;因此,若想實現具一方以上參與開發、遞送與部署的可行解決方案,需要協同合作與可預期的投資報酬率。 供應鏈生態系統持續拓展 舉例而言,協助裝置、模組製造商及MNO的NB-IoT生態系統企業之一Arm,欲讓具備NB-IoT與RSP功能的物聯網裝置儘快在全球各地準備就緒,該公司認為MNO與應用提供者可利用Arm Kigen伺服器解決方案,把RSP能力整合進入他們的服務開通環境,而該公司在英國與美國的資料中心目前都已取得SAS-SM的認可。另一方面,Arm Kigen OS則可協助OEM廠商打造低耗電、低成本、安全的eSIM或Isim,它安全且符合GSMA協會規定的eUICC SIM作業系統,已針對各種硬體形狀因素進行緊密性與可攜性的優化。 Arm的願景是全球於2035年可部署1兆個聯網裝置,其中NB-IoT與RSP為重要的一環。環視物聯網不斷大量擴充規模,希望可藉此協助生態系統成長,並在各地激勵物聯網的創新。 (本文作者為Arm物聯網平台事業處商務拓展資深總監)
0

5G考驗晶片封裝可靠度 模擬工具協力解難題

對於這些應用場景來說,5G基礎設施以及雲端運算、邊緣運算,AI等關鍵技術,搭配為不同應用場景設計的終端設備,可實現極其豐富的功能和體驗。但各式各樣的5G設備,都面臨著類似的技術挑戰,比如5G智慧手機、網路設備所使用的系統單晶片(SoC)、射頻積體電路(RFIC)等,一方面必須符合溫度和功耗限制,另一方面仍須具備強大的資料處理能力。 因此,5G晶片的可靠性,是工程師在設計相關晶片產品時,必須重點考慮的面向,且必須從晶片、封裝、系統等不同層次考慮其熱可靠性以及結構可靠性。本文將重點討論電子產品結構可靠性設計方面的典型問題,及如何用模擬工具來解決這些問題的方法。 電子產品對結構可靠性的要求 據美國空軍航空電子整體研究專案(US Air Force Avionics Integrity Program)發現,電子產品失效主要是由溫度、振動、潮濕和粉塵引起(圖1)。 圖1 電子產品失效原因分析 5G電子產品的性能和指標要求將更加苛刻,以最典型的終端產品--手機來說,其5G功能工作在更高的頻段,物理尺寸更加緊湊,電磁損耗更集中,其性能卻更容易受到溫度的影響,以及受到長時間外部使用環境的影響。因此,5G設備對結構可靠性要求將更為嚴格。 要對電子產品的結構可靠性進行分析,可從部件、系統兩個面向來著手;當然,電子產品可靠性也是一個複雜的多物理場分析過程。比如對5G晶片來說,先進封裝技術是保障5G晶片發揮極限性能,且滿足低功耗要求的關鍵技術;高可靠度的封裝,則是5G晶片能長時間安全運行的保證。 時下先進的2.5D IC/3D IC封裝技術,包括通過矽通孔(TSV)實現晶片堆疊、系統封裝(SiP),層疊封裝(PoP),高級晶圓級封裝(WLP),將成為5G晶片封裝設計的主流選擇。堆疊晶片所使用的TSV不僅縮短互連路徑,提高I/O速度,還可有效降低功耗,因為堆疊了多個裸晶(Die),因此減小了電容並減小了尺寸。儘管2.5D或3D IC是非常有前途的封裝技術,但由於其複雜性,仍充滿了挑戰。 系統層面,組裝在一起的5G終端產品,還需考慮整機設備的變形、振動、跌落碰撞、散熱等問題。而這些問題,都是典型的結構可靠性和熱可靠性方面的問題。 PCB/封裝的結構可靠性 如前所述,先進封裝是5G晶片設備的關鍵技術,而日益增長的性能要求和嚴苛的使用環境,對先進封裝的結構可靠性也提出了很大的挑戰。典型的問題有如下幾個方面,後面的分析也將在這幾個方面展開。 ・PCB/封裝在迴圈溫度作用下的翹曲分層 ・PCB/封裝在潮濕環境下吸濕膨脹(爆米花效應) ・封裝器件在振動衝擊作用下失效等 ・封裝焊球在溫度迴圈下產生疲勞裂紋和失效 PCB/封裝在Flip Chip製程+迴圈溫度作用下的翹曲變形 在半導體產業,Flip Chip製程廣泛用於PCB/封裝等元件連接,在此製程下,封裝就會有殘餘變形和應力的產生,也有塑性應變的存在。當PCB/封裝連接後,還會對其進行相應的溫度迴圈測試。使用Ansys Mechanical工具對整個流程進行模擬,可以瞭解Flip Chip製程產生的塑性狀態對後續溫循模擬的影響(圖2)。 圖2 模擬模型和溫度條件 對於PCB/封裝模擬而言,想要得到準確模擬結果,PCB和封裝的材料屬性是關鍵。但對於PCB和封裝的結構過於複雜,且特徵尺寸小,如果按傳統分網格的方法,網格量會巨大,操作起來也不現實;如果考慮計算效率,對每層PCB板賦予相同材料屬性,那計算精度就會大打折扣。 那有沒有一種既考慮精度又能兼顧效率的方法?答案是肯定的。Ansys專利技術“Trace Mapping”正好可以解決PCB模擬的材料模型計算的難題。 通過SCDM導入EDA軟體裡建立的PCB板模型,考慮每一層每個位置的含銅率,計算每一層PCB每個位置的熱物參數(各向異性),比如密度、導熱係數、熱膨脹率、泊松比等。然後通過trace import將計算的詳細熱物參數導入到Mechanical中,Map到多層矩形板上,Map後的矩形板雖然不具有原來PCB板的幾何結構和特徵,但是具有原來PCB板的詳細熱物參數(圖3)。 圖3 PCB熱物理模擬執行程序 因為進行熱力計算時,影響熱力模擬準確性的主要是PCB板自身的熱物參數準確性,所以即使矩形板沒有詳細幾何特徵,也可以進行準確的熱力計算。 使用Trace Mapping方法準確計算PCB各處的材料屬性,再結合生死單元、子模型方法,就可以對Flip Chip+溫循製程進行多尺度精確分析,得到PCB/封裝結構的受力和變形(圖4、圖5)。 圖4 對PCB/封裝結構進行應力分析後得到的視覺化結果 圖5 封裝中金屬和介質材料等效應力 PCB/封裝在潮濕環境下吸濕膨脹 塑封是廣泛應用的電子封裝技術之一。其封裝的基板和塑封料主要成分是樹脂,具有親水性和多孔性。當水分進入封裝中,會使得塑封的電子元器件發生由於吸濕引起的介面層破裂和電子元器件的整體失效破壞,甚至發生爆米花式的斷裂。所以,如美國空軍航空電子完整性專案發現的,濕度也是引起電子產品失效的重要因素。 對吸濕分析而言,最主要是依據濕度的擴散機理,獲取封裝中濕度分佈,最後分析濕度應力。在Ansys中採用菲克第二定律(Fick's second law)來預測隨著時間變化,擴散對濃度分布的影響: 同時為了求解濕度應力,需要熱-結構-擴散直接耦合單元22X系列求解計算(該方法已開發成ACT,整合在workbench中)。 通過以上濕度擴散和耦合單元,可以獲得封裝結構濕度分佈和濕應力狀態,用於找出封裝結構薄弱區域(圖6、圖7)。參考GB2423.3-93等行業標準,可以對封裝在濕度環境下進行試驗,採用Ansys解決方案可以再現該濕度測試試驗。 圖6 封裝中濕度濃度分布 圖7 封裝中濕應力引起的應變 PCB/封裝元件在振動衝擊作用下失效 在某些情況下,振動衝擊所引起的部件失效也會成為封裝結構主要的失效原因,同時封裝結構在受到衝擊的同時,也會受到熱應力的影響。如何同時評估熱應力和振動的影響,得到封裝結構的損傷,最終得到封裝使用壽命是一個需要重點考慮的方向。 對於振動分析,材料屬性也非常關鍵。類似於溫度迴圈分析,同樣可以採用Ansys Trace Mapping來等效計算封裝的材料屬性,對於封裝結構在有熱應力作用下分析,可以在Ansys Workbench採用以下流程進行計算: 對於PCB/封裝的熱分析,可以採用Ansys Mechanical中的熱模組計算,得到PCB/封裝結構的溫度分布。溫度分布結果可以無縫傳遞到結構分析模組,計算得到溫度所引起的熱應力分布。預應力結果同樣可以無縫傳遞到模態分析中,改變結構的剛度,從而改變PCB/封裝的整體振動特性(圖8)。 圖8 考慮熱應力的振動模擬流程 通過以上流程,我們可以儘量考慮溫度對振動特性的影響。如果要分析隨機振動疲勞,在該流程中也能實現(圖9)。 圖9 隨機振動疲勞模擬 在隨機振動後處理中,插入疲勞模組,就可以進行隨機振動計算。預設使用電子行業主流的Steinberg隨機振動疲勞模型。這樣就可以在統一平台上,完成帶預應力(熱應力)的隨機振動分析及振動疲勞分析(圖10)。 圖10 隨機振動疲勞壽命分布 封裝焊球在溫度迴圈下產生疲勞裂紋和失效 電子封裝中廣泛採用SMT及新型的晶片尺寸封裝(CSP)、閘球陣列(BGA)等封裝技術,均要求通過焊點直接實現電氣及剛性結構連接。焊球和非金屬材料的熱膨脹係數差異巨大,工作在高溫下會引起熱應力,造成焊球的熱應變。同時電子元件頻繁開關,讓焊點在高低溫下經受往復應力作用。因此焊球容易在高低溫迴圈下產生裂紋及擴展。因此焊球的可靠性將在很大程度上決定系統的可靠性。 Ansys採用電子封裝行業主流的Anand粘塑性模型表徵焊球材料特性,Darveaux模型來進行焊球壽命預測,並且在Ansys...
0

隔離層偏置供電設計靈活並簡化 DC/DC電源四架構大整併

穿過隔離層移動訊號和電源對設計工程師而言是一項常見的挑戰。為了提高安全性和抗噪,或產生較大的電位元差時,可能需要在不同系統領域間進行隔離。如手機充電器透過內部隔離,可以在連接器短路時防止用戶觸電。而在工廠機器人等其他應用中,敏感控制電路單獨接地,並與產生較大直流電流、噪音和接地反彈的馬達進行隔離。 通訊和感應通常在隔離層中進行。具有控制器區域網路(CAN)或CAN靈活資料傳輸速率(FD)通訊協定的汽車應用,透過整合隔離和收發器元件的隔離式CAN收發器,可以將這些訊號和汽車的高壓側隔離。工業應用也可以使用CAN協定和RS-485協定進行遠距離序列通訊。與隔離CAN和CANFD訊號雷同,設計工程師可以使用專門為RS-485協定設計的隔離式收發器。保護繼電器使用隔離式電流和電壓感測器來感測電網中的電力輸送。牽引逆變器和馬達驅動器接收馬達控制器發出的脈衝寬度調變訊號,然後訊號經過隔離器向閘極驅動器發出開啟或關閉絕緣柵雙極電晶體的指令。 隔離偏置轉換器可透過從隔離層一側提供另一側偏置電源,實現隔離通訊和感應。電流和電壓感測器、數位隔離器和閘極驅動器通常需15W以下甚至低至幾十毫瓦的電源。圖1為上述每個應用的範例。 圖1 隔離式偏置應用 隔離式DC/DC偏置電源應用多 無論是具有外部電源開關的控制器、集結了多個電源開關和控制器的轉換器,或是整合控制器、電源開關和變壓器為一體的電源模組,都有許多可提供隔離式偏置電源的解決方案。因為偏置電源解決方案的種類廣泛,涉及的應用也五花八門,為了以最低成本符合各類規格,全面瞭解應用需求至關重要。設計人員至少應該瞭解偏置電源的輸入電壓範圍、輸出電壓和輸出功率需求。 有些應用需要多個偏置電壓,因此確定每個輸出的可接受調節範圍為關鍵。隔離等級、操作環境溫度範圍、電磁干擾(EMI)和電磁相容性(EMC)等系統要求會進一步影響設計決策。表1從較廣泛的角度展示隔離式偏置轉換器的四種規格範例。 接下來介紹隔離式偏置電源拓撲的一些範例。 返馳式架構靈活調節/隔離/輸出 返馳式轉換器是一種眾所皆知的拓撲架構,數十年來被廣泛應用。這種電源轉換器因擁有靈活性和低成本等特點,可用於多種應用。透過整合場效電晶體(FET)和一次側控制等增強功能,這種拓撲結構更受矚目。 相較順向、推挽和半橋型等降壓拓撲,返馳式拓撲僅需要一個初級開關、一個整流器和一個類似變壓器的耦合電感器,如圖2為轉換器的簡化電路圖。當初級開關打開時,輸入電壓會施加在初級線圈上,在變壓器的氣隙內儲存能量。在這種情況下,僅有輸出電容器能給輸出負載供電。初級開關關閉時,儲存在變壓器中的能量通過整流器輸送到次級側,為負載和輸出電容器供電。 圖2 返馳式轉換器 返馳式轉換器完全可作為偏置轉換器,原因為返馳式轉換器能在一個轉換階段內實現調節和隔離,也可靈活用於多個輸出。因此讀者可選擇輸出繞組的數量,隨後在變壓器上纏繞線圈,借此支援自身選擇的配置。輸出繞組上的電壓是工作週期和初級到次級繞組匝數比的函數;同時為滿足系統隔離需求,也可以將每個輸出端作為不同的接地基準點。此外,返馳式轉換器的其他優勢,包括相對較低的成本和寬輸入輸出工作電壓範圍。 為實現最佳性能,正確設計返馳式變壓器非常重要。變壓器應有良好的耦合力且漏電感低,以實現最高效率和最佳調節,尤其是在多輸出的情況下。然而還必須限制初級和次級側間的寄生電感,以防止產生過多的電磁干擾(EMI)。 隔離式偏置電源拓撲實現穩定控制 如德州儀器(TI)用於搭建隔離式偏置電源的專用拓撲—Fly-Buck轉換器,其工作輸入電壓可高達100V。與返馳式轉換器相同,金屬氧化物半導體場效電晶體(MOSFET)通常整合在積體電路(IC)內,可輕鬆實現初級側控制。圖3所示為Fly-Buck轉換器。該拓撲採用同步降壓轉換器和耦合電感器來產生一個或多個隔離式輸出;當高側開關打開時,初級側則作為降壓轉換器運作,次級繞組電流為零;而當高側開關關閉且低側開關打開時,初級側則利用其儲存的能量對次級側供電。 圖3 Fly-Buck轉換器 推挽式變壓驅動器彈性又降噪 推挽式變壓驅動器是適用於低噪聲、小型隔離式電源的常用解決方案,由具有嚴格電壓調節功能的輸入軌供電,以開環模式運作,固定工作週期50%。整合MOSFET到積體電路中,可實現緊湊的電磁解決方案。 圖4所示為推挽式拓撲。推挽式拓撲是順向雙端拓撲,有兩個MOSFET作為接地基準,因此毋須外部自舉電路。與單端順向拓撲轉換器類似,FET的電壓應力是輸入電壓的兩倍。兩個MOSFET每隔半個週期切換一次,工作週期為50%,驅動變壓器裡中心抽頭的繞組。 圖4 推挽式變壓驅動器 同步降壓轉換器非常普遍,因而使得Fly-Buck轉換器拓撲備受青睞。由於回饋迴路可以在初級輸出電壓處閉合,該轉換器不需要額外的輔助繞組或光絕緣器來進行控制。同時,因耦合電感器的結構靈活,匝數比、額定絕緣等級、次級繞組數和PWM工作週期都可控制,因此適用於多種應用。 與返馳式轉換器相同,耦合電感器也必須合理設計,尤其注意要在限制初級到次級的寄生電容時控制漏電感。對於需要100V以上輸入的應用,可以使用具有外部MOSFET的Fly-Buck轉換器。 推挽式變壓驅動器是一種普遍的隔離式偏置電源解決方案,原因是其具有靈活性,能支援多路輸出;其開環配置省去回饋迴路,進而簡化設計。該變壓器具有較低的初級和次級電容,相較返馳式和Fly-Buck轉換器能降低共模噪音。此外,推挽式拓撲能更有效利用變壓器鐵芯的磁化電流,以實現比返馳式和Fly-Buck轉換器更小的磁解決方案。 即使變壓驅動器具有許多優點,但也應注意權衡利弊。不同於返馳式和Fly-Buck轉換器,變壓驅動器不支援寬輸入電壓範圍,需要嚴格調節輸入電壓;且由於沒有閉合迴路,不容易滿足輸出電壓反饋調節需求,可能需要低壓差線性穩壓器(LDO)。 電源模組常搭配隔離式偏置轉換器 電壓模組具有數十年的發展歷史。這類解決方案非常普遍,與離散式電源相比可顯著提高整合度。電源模組種類繁多,可提供輸入電壓、輸出電壓、輸出功率、輸出數量、隔離等級和調節等選項。 一般電源模組內部運作的原理,其拓撲包括變壓驅動器,與離散式拓撲雷同;某些元件可能整合成一個輸出LDO作為調節。 電源模組為大部分的隔離式偏置轉換器應用提供多種選項,因為毋須規定、設計或選擇變壓器,可以大幅簡化設計過程,只需加入輸入和輸出去耦電容就可以開始設計。同樣地,也提供同步、輸出電壓選擇、賦能和錯誤訊號等其他選項。 在使用專門配置輸出數量和變壓器匝數比的模組時,可能會降低靈活性。與額定環境溫度為125℃的模組相比,55℃和85℃選項的模組更受青睞;同樣地,採用完全增強式隔離的模組數量也不及採用功能型或基本隔離的模組。 未來偏置解決方案趨向整合 變壓器設計的創新和更高頻率的拓撲可使IC設計者將變壓器和矽整合到一個IC中,而終端用戶不需再設計變壓器或降低系統性能,便能獲得小型輕量級的隔離式DC/DC偏置電源。圖5所示為德州儀器偏置電源UCC12050的原理圖,儘管看起來與具有整合功率級和整流器的電源模組類似,但研究其運作後發現,其開關頻率比電源模組高很多。 圖5 UCC12050隔離式DC/DC偏置電源 相較開關頻率較低的其他電源,該電源的高度和重量都顯著降低;若使用內部拓撲控制方案,毋需LDO或外部回饋元件即可實現閉合迴路運作,因此可為各種隔離式DC/DC偏置電源應用帶來許多優勢。其設計使用EMI最佳化變壓器,初級側至次級側之間的電容僅為3.5pF,採用雜訊控制方案。毋需鐵氧體磁珠或LDO,雙層PCB解決方案本身即符合CISPR32B類標準。該裝置性能強勁,增強型隔離額定值為5kVrms,額定工作電壓為1.2kVrms,可在125℃環境溫度下運作。該裝置系列還包括UCC12040,其基本隔離額定值為3kVrms,額定工作電壓為800Vrms。 表2則對上述各種拓撲進行比較,可藉此看出,具有外部變壓器的拓撲能帶來較大的靈活性,而電源模組和UCC12050簡便易用。 現今已有許多隔離式電源可以選擇,但仍須瞭解輸出數量、調節需求、輸出功率、隔離等級、工作溫度和輸入電壓範圍等系統級規格。 (本文作者為德州儀器業務主管)
0

結合軟/硬體聯網控制 四足玩具機器人腳步靈活

本文以四足玩具機器人為例為例,結合Wi-Fi及攝影鏡頭,讓操作者能夠以自行寫的網頁介面來控制四足玩具機器人,同時能夠藉由網路攝影鏡頭ESP32-CAM透過Wi-Fi模組所發出的熱點連結到網頁上,可以看到四足玩具機器人移動時的即時影像。機器人的外觀能夠隨個人所喜歡的樣式變,透過3D軟體設計與3D列印機就能製作出想要的外殼,讓操作者都能夠擁有屬於自己獨一無二的四足玩具機器人。至於遙控方面,網頁設計遙控人機介面,不必擔心遙控器不見,也能夠克服使用App作為遙控裝置所導致的手機容量不足或是手機版本不相容的問題。至於機器人的主控核心,則以盛群半導體(Holtek)的HT32F52352晶片為控制核心晶片,搭配PCA9685脈寬調變控制晶片輸出控制訊號,將裝設於機構關節上的RC伺服馬達進行轉動角度之控制,實現四足玩具機器人設計開發之目的。 機器人三點不動維持平衡 此四足機器人的移動必須隨時保持移動平衡,否則有摔倒的可能。機器人在移動時先提起一隻腳,靠另外三隻腳支撐身體,輪流動作以達到移動效果。而三角形重心求法為調整四足玩具機器人平衡時所運用之運算原理,不管是在移動或是靜止狀態時,若是讓四足玩具機器人以三角形面求出的重心落在三角形外側,則無法使機器人保持平衡。 1.三角形重心求法:以三角形三個邊的中點與各對角的拉線互相交會的點(G)為三角形重心。 2.三角形面保持平衡方法:三角形面的重心若未落在三角形外側,則此面必能保持平衡。 圖1 四足玩具機器人移動原理圖 圖1為四足玩具機器人移動原理圖,四足玩具機器人移動以最簡單的腳步移動動作。操作時必須確保四足玩具機器人在每次移動的時候都有三隻腳踩在地面上,而四足玩具機器人由三角形求法求出的重心必須放在由三隻腳形成的三角形範圍內。如果正在移動或是靜止狀態下,四足玩具機器人的重心離開了三角形,四足玩具機器人將失去平衡而跌倒。圖2、圖3則為機器人站立及Say Hi腳部關節說明,藉由圖中的表格能看出調整每個馬達角度,讓馬達達到不同的角度帶動四足玩具機器人的效果,以變化各種動作。 圖2 四足玩具機器人站立腳部關節說明圖 圖3 四足玩具機器人Say Hi腳部關節說明圖 系統控制關節動作概覽 圖4為四足玩具機器人系統架構圖,系統使用32位元微控制器HT32F52352為控制核心,並透過I2C的傳輸方式將每個關節所需求的訊號,透過PCA9685脈寬調變產生晶片進行控制訊號輸出,以控制RC伺服馬達旋轉角度,完成機器人各關節的轉動需求。而14顆伺服馬達在四足玩具機器人上的相關位置,由PWM產生器控制14顆伺服馬達帶動四足機構來完成移動,與需求動作表現的控制效果。機器人上有一攝影鏡頭是透過ESP32-CAM控制模組所發出的熱點,傳輸影像於自行設計的網頁人機介面端。當機器人移動時可由網頁端按鈕按下,然後可下送命令到晶片控制端,經由運算及順序判斷,將控制訊號傳遞給PCA9685的PWM產生器,輸出訊號給各關節RC伺服馬達,帶動四足機構以實現動作任務。 圖4 四足玩具機器人系統架構圖 四足玩具機器人硬體架構(圖5)中以HT32F52352晶片作為主控核心,配合資料傳輸模組、PWM產生器PCA9685、RC伺服馬達,組成四足玩具機器人移動控制,並藉由ESP32 Wi-Fi模組所發出的熱點,可由任何可聯網之個人電腦或行動裝置,透過網頁控制介面端及時進行操作及監控。此外,四足玩具機器人運用3D列印技術印製出外觀與腳部關節,至於四足玩具機器人組成所運用到的3D列印零件,結合伺服馬達及Wi-Fi攝影鏡頭模組即能成為四足玩具機器人。 圖5 四足玩具機器人硬體架構圖 此機器人使用HT32F52352晶片為主控核心(圖6),透過UART串列傳輸連結Wi-Fi模組。再藉由Wi-Fi模組將網頁端所發出的指令傳輸到主控核心晶片,並運用I2C方式傳送指令至PWM產生器來控制14顆伺服馬達完成網頁端所選取之動作。圖7是ESP32-CAM Wi-Fi攝影模組,使用到的ESP32-CAM模組是由Wi-Fi電路與攝影鏡頭組合而成。Wi-Fi攝影模組藉此作為控制晶片與網頁控制介面端傳輸橋梁,ESP32是完整的Wi-Fi模組晶片能夠獨立工作,也作為從機搭載於其他主機MCU。 圖6 主控核心電路 圖7 ESP32-CAM控制電路圖 圖8為四足玩具機器人之電源轉換電路,此機器人中擁有許多種不同類型電子元件,包含MCU、金屬齒輪伺服馬達、塑膠齒輪伺服馬達、Wi-Fi攝影模組等需要多種不同電壓之電源供應,包含3.3伏特、5伏特、6伏特三種電壓輸出,3.3伏特用於提供MCU之電源供應,5伏特則提供Wi-Fi攝影模組及2顆塑膠齒輪伺服馬達之電源供應,6伏特為提供12顆金屬齒輪伺服馬達之電源供應。四足玩具機器人中有兩種伺服馬達(圖9),一是金屬齒輪伺服馬達(MG995),另一種是塑膠齒輪伺服馬達(MG90),兩者都由PWM產生器(PCA9685)控制。主要是由網頁控制介面端下達動作指令藉由Wi-Fi模組傳送到控制晶片,再以I2C傳輸協定傳送給PWM產生器來完成指令。 圖8 電源轉換電路 圖9 馬達控制電路 透過Wi-Fi模組聯網控制 四足玩具機器人網路架構(圖10)是透過Wi-Fi模組所發出的熱點,與任何可聯網之個人電腦或行動裝置連結,連結後即可由網頁控制介面端按鈕下送指令到晶片主控核心控制四足玩具機器人。當Wi-Fi模組所發出的熱點與可聯網之裝置連結後即可看到網頁控制介面端,網頁控制介面端可看到LOGO、方向控制頁面、動作控制頁面,及ESP32-CAM所傳輸之攝影機影像。 圖10 四足玩具機器人網路架構圖 操控四足玩具機器人時,程式開始時會先執行基本的設定,並且設定PCA9685的PWM產生器頻率為50Hz,等待使用者從網頁端按下按鈕後,再將收到的命令用以控制伺服馬達,以此完成玩具四足機器人之操作(圖11)。 圖11 主控核心動作流程圖 本網頁端以HTML格式撰寫,將網頁程式碼寫入ESP32-CAM模組中(圖12)。程式會先初始化設定鏡頭,並且建立網頁。當使用者按下網頁按鈕後,會透過UART將從網頁端收到的資料傳送給主控核心晶片進行控制四足機器人的腳步移動效果,同時可藉由網頁控制介面端觀看即時影像。 圖12 ESP32-CAM操作流程圖 此四足玩具機器人共可完成19項動作,包含上、下、左、右、前進、後退、左移、右移、左轉、右轉、站立、Say Hi、休息、躺下、舞姿一、舞姿二、舞姿三、轉圈圈、匍匐前進等。因其動作彈性且以網頁人機介面控制,除不需要遙控器,使用者也毋須額外下載App,在生活中可作為孩童與長者之玩具與陪伴,並能用於環境安全監測。 (本文作者陳宏明為建國科技大學電子工程系副教授;王奕偉/陳威志/王銘典為建國科技大學電子工程系學生)
0

帶通模式護駕降功耗  ECU實現零開關雜訊供電

透過總結上個世紀的經驗,汽車製造商對會干擾運作、造成損壞的電子狀況和瞬變進行分類。國際標準組織(ISO)對業界知識進行編譯,並制定出適用於道路車輛的ISO 16750-2和ISO 7367-2規範。汽車電子控制單元(ECU)使用的電源至少應該能夠承受這些狀況,且不造成損壞。至於關鍵系統,則必須保持功能性和容差。這需要電源透過瞬變調節輸出電壓,以保持ECU運作。在理想的情況下,完整的電源解決方案毋需使用保險絲,而可以最大限度地降低功耗,且採用低靜態電流,在不耗盡電池電量的情況下保持支援系統開啟。 ISO 16750-2合併多方案解決汽車電子系統挑戰 在最近的反覆運算中,ISO 7367-2電磁相容規範主要介紹來自相對較高的阻抗源(2Ω至50Ω)的大幅度(>100V)、短時持續(150ns至2ms)瞬變。這些電壓峰值通常可以使用被動元件消除。圖1顯示定義的ISO 7367-2脈衝1,以及增加的330μF旁路電容。電容將尖峰幅度從-150V降低至-16V,完全在反向電池保護電路支援的範圍內。ISO 7367-2脈衝2a、3a和3b的能耗遠低於脈衝1,所需的抑制電容也更少。 圖1 ISO 7367-2:具備和不具備330μF旁路電容的脈衝1 ISO 16750-2主要介紹來自低阻抗源的長脈衝。這些瞬變無法輕鬆過濾,通常需要使用基於穩壓器的主動式解決方案。一些更具挑戰性的測試包括:負載突降(測試4.6.4)、電池反接(測試4.7)、疊加交變電壓測試(測試4.4),以及引擎啟動工況(測試4.6.3)。圖2顯示了這些測試脈衝的視圖。ISO 16750-2中所示條件的差異性,加上ECU對電壓和電流的要求,通常需要合併使用這些方案,以滿足所有要求。 圖2 更嚴格的ISO 16750-2測試概述 TVS/降壓穩壓器慎防負載突降 負載突降(Load Dump)(ISO 16750-2:測試4.6.4)屬於嚴重的瞬態過壓,其模擬電池斷開,但交流發電機提供大量電流的情況。負載突降期間的峰值電壓被分為受抑制電壓或未受抑制電壓,由三相交流發電機的輸出是否使用雪崩二極體來決定。受抑制的負載突降脈衝限制在35V,不受抑制的脈衝峰值範圍則為79V至101V。無論是處於哪種情況,因為交流發電器定子繞組中儲存了大量的電磁能量,所以可能需要400ms進行恢復。雖然大部分汽車製造商使用雪崩二極體,但隨著人們對可靠性的要求不斷增高,使得一些製造商要求ECU的峰值負載突降電壓必須接近未受抑制情況下的電壓。 解決負載突降問題的方法之一,就是添加瞬變電壓抑制器(TVS)二極體,從局部箝位ECU電源。更精小、容差更嚴格的方法則是使用主動湧浪抑制器,例如LTC4364,該抑制器以線性方式控制串接的N通道MOSFET,將最大輸出電壓箝位至使用者配置的水準(例如27V)。湧浪抑制器可以幫助斷開輸出,支援可配置限流值和欠壓鎖定,且可使用背靠背NFET提供通常需要的反向電池保護。 對於線性穩壓功率元件,例如湧浪抑制器來說,其所存在的隱患在於,在負載突降期間限制輸出電壓,或者在短路輸出期間限制電流時,N通道MOSFET可能功耗較大。功率MOSFET的安全工作區域(SOA)限制最終會限制湧浪抑制器能夠提供的最大電流。它還提出了在N通道MOSFET必須關閉,以避免造成損壞之前,必須保持穩壓的時長限制(通常使用可配置計時器針腳設置)。這些SOA導致的限制隨著工作電壓升高變得更加嚴重,而增加了湧浪抑制器在24V和48V系統中使用的難度。 更具擴展性的方法是使用降壓穩壓器,該穩壓器可在42V輸入下運作。切換開關穩壓器與線性穩壓器不同,其並無MOSFET SOA限制,但顯然它更加複雜。降壓穩壓器的效率支援實施大電流操作,其頂部切換開關則允許輸出斷開,並支援電流限制。至於降壓穩壓器靜態電流問題,已由最新一代元件解決,這些元件僅消耗幾微安培電流,在無負載條件下也能保持穩壓。透過使用Silent Switcher技術和展頻技術,切換開關雜訊問題也得到大幅的改善。 此外,有些降壓穩壓器能按100%工作週期運作,保證頂部切換開關持續開啟,透過電感將輸入電壓傳輸到輸出。在過電壓或過電流條件下,會觸發切換開關操作,以分別限制輸出電壓或電流。這些降壓穩壓器作為切換開關湧浪抑制器使用,實現低雜訊、低損耗操作,同時保持切換開關模式電源的可靠性。 理想二極體控制器驅動降反向電壓功耗 當電池終端或跳線因為操作員故障反向連接時,會發生反向電壓條件(也稱為反向電池條件)。相關的ISO 16750-2脈衝(測試4.7)反覆對DUT施加-14V電壓,每次60秒。關於此測試,有些製造商增加了自己的動態版本,在突然施加反向偏置(4V)之前,先起始地為此元件供電(例如VIN=10.8V)。 快速研究資料手冊後發現,很少有IC設計可以接受反向偏置,其中IC的絕對最小針腳電壓一般限制在-0.3V。低於地的電壓如果超過一個二極體的電壓,會導致額外電流流過內部接面,例如ESD保護元件和功率MOSFET的二極體。在反向電池條件下,極化旁路電容(例如鋁電解電容)也可能受到損壞。 肖特基二極體可以防止反向電流,但在正常運行期間,正向電流更高時,這種方法會導致更大功耗。圖3所示為基於串接P通道MOSFET的簡單保護方案,這種方案可以降低功耗損失,但在低輸入電壓下(例如發動機啟動),因為元件門檻電壓的原因,這種方案可能無法順暢運行。更加有效的方法是使用理想二極體控制器,以驅動串列N通道MOSFET,該MOSFET在負電壓時切斷輸入電壓。正常運作期間,理想二極體控制器調節N通道MOSFET的源漏電壓降低到30mV或更低,將正向壓降和功耗降低超過一個數量級(相較於肖特基二極體)。 主動整流器高頻輸入電壓護下游電路 疊加交變電壓測試(ISO 16750-2:測試4.4)模擬汽車的交流發電器的交流輸出的影響。正如其名,正弦訊號在電池軌道上疊加,峰值幅度為1V、2V或4V,具體由嚴重程度分類決定。對於所有嚴重性等級,最大輸入電壓為16V。正弦頻率以對數方式排列,範圍為50Hz至25kHz,然後在120秒內回到50Hz,總共重複5次。 本測試會導致在任何的互連濾波器網路內產生大幅度諧振低於25kHz的電流和電壓擺幅,它也會使切換開關穩壓器出現問題,其迴路頻寬限制使其難以透過高頻率輸入訊號進行調節。解決方案就像是中間整流元件,例如功率肖特基二極體,但對於反向電壓保護,這並不是一種解決問題的好方法。 在這種情況下,理想的二極體控制器無法像在反向電壓保護應用中一樣發揮作用,因為它無法足夠快速地切換開關N通道MOSFET,以和輸入保持同步。閘極上拉強度是其中一個限制因素,一般因為內部電荷泵限制在20μA左右。當理想的二極體控制器能夠快速關閉MOSFET時,開啟速度會非常慢,不適合對極低頻率以外的情況實施整流。 更合適的方法是使用LT8672主動整流器控制器,該控制器可以快速開關N通道MOSFET,以高達100kHz的頻率整流輸入電壓。主動整流器控制器是帶有兩個重要附加元件的理想二極體控制器,一個由輸入電壓增壓的大型電荷記憶體,另一個是快速開關N通道MOSFET的強勁閘極驅動器。相較於使用肖特基二極體,這種方法可以降低功率損失達90%以上。LT8672也和理想的二極體控制器一樣,保護下游電路不受電池反接影響。 MOSFET限制切換開關解決啟動工況 發動機啟動工況(ISO 16750-2:測試4.6.3)屬於極端欠壓瞬變,有時候指代冷啟動脈衝,這是因為在更低溫度下,會發生最糟糕的電池壓降。特別是當啟動器啟動時,12V電池電壓可能立刻降低到8V、6V、4.5V或3V,具體由嚴重程度分類決定(分別為I、IV、II和III級)。 有些系統中,低壓差(LDO)線性穩壓器或開關降壓穩壓器足以支援電源電軌因應這些瞬變,只要ECU電壓低於最低的輸入電壓。例如,如果最高的ECU輸出電壓為5V,且其必須達到嚴重程度等級IV(最低輸入電壓6V),那麼使用壓差低於1V的穩壓器即可。發動機啟動工況電壓最低的分區只能持續15ms至20ms,所以大型旁路電容之後的整流元件(肖特基二極體、理想二極體控制器、主動整流器控制器)可能可經受這部分脈衝,如果電壓淨空短暫地下降至低於穩壓器壓降差。 但是,如果ECU必須支援高於最低輸入電壓的電壓,則需要使用升壓穩壓器。升壓穩壓器可以在高電流位準上,有效保持來自低於3V輸入與12V輸出電壓。但是升壓穩壓器還存在一個問題,從輸入到輸出的二極體路徑無法斷開,所以自然地電流在啟動時或者短路時不受限。為了防止電流失控,專用的升壓穩壓器整合湧浪抑制器前端來支援輸出斷開和限流,以及在使用背靠背N通道MOSFET時提供反向電壓保護。這個解決方案可以利用單個積體電路解決負載突降、發動機啟動和電池反接,但是可用電流受湧浪抑制器MOSFET的SOA限制。 四開關的升降壓穩壓器透過共用的電感來聯合同步降壓穩壓器和同步升壓穩壓器,以消除此限制。這種方法可以滿足負載突降和發動機啟動工況測試的要求,且電流位準或脈衝持續時間不會受到MOSFET SOA限制,同時還保有斷開輸出和限流的能力。 升降壓穩壓器的開關操作由輸入和輸出電壓之間的關係決定。如果輸入遠高於輸出,升壓頂部開關持續開啟,降壓功率級則降低輸入。同樣的,如果輸入遠低於輸出,降壓頂部切換開關持續開啟,升壓功率級則增高輸出。如果輸入和輸出大致相等(在10%至25%之間),那麼降壓和升壓功率級會以交錯方式同時開啟。如此,可以透過僅對高於、約等於或低於輸出的輸入電壓實施穩壓所需的MOSFET限制切換開關,分別最大化各個開關區域(降壓、升降壓、升壓)的效率。 圖3匯總介紹了應對負載突降、反向輸入電壓、疊加交變電壓和發動機啟動工況測試的各種解決方案,以及各種方案的優缺點。可以得出幾個關鍵結論: ˙漏極面向輸入的串接N通道MOSFET極其有用,因為它可用於限流和斷開輸出,無論是它被用作切換開關(例如在降壓功率級中)或線性控制元件(例如在湧浪抑制器中)。 ˙涉及反向輸入保護和疊加交變電壓時,使用N通道MOSFET作為整流元件(面向輸入的源極)可以大幅降低功率損失和壓降(相較於使用肖特基二極體)。 圖3 解決困難的ISO 16750-2測試採不同方法 ˙相較於線性穩壓器,使用切換開關模式電源更合適,因為它可以消除功率元件的SOA導致的可靠性問題和輸出電流限制。它可以無限調節輸入電壓極限值,而線性穩壓器和被動解決方案本身存在時間限制,這種限制會令設計更加複雜。 ˙升壓穩壓器不見得需要使用,具體由啟動工況的分類和ECU(必須提供的最高電壓是多少)的詳情決定。 如果需要升壓穩壓,那麼四開關升降壓穩壓器會將上述需要的特質融合到單個元件中。它可以在高電流位準下,有效地調節嚴重欠壓和過壓瞬變,以延長持續時間。從應用的角度來看,這使其成為最可靠和簡單的方法,但其設計複雜性也會增加。然而,典型的四開關升降壓穩壓器存在一些缺點。其一,不能自然提供反向電池保護,必須使用額外電路來解決這個問題。 四開關升降壓穩壓器存在的主要問題在於,它大部分運作壽命都消耗在效率更低、雜訊更高的升降壓-壓開關區域。當輸入電壓非常接近輸出電壓(VIN~VOUT)時,所有4個N通道MOSFET都會主動開啟,以保持穩壓。隨著開關損耗增大,以及使用最大的閘極驅動電流,效率降低。當降壓和升壓功率級熱迴路都啟用,穩壓器輸入和輸出電流出現斷續,這個區域內的輻射和導電EMI性能會受到影響。四開關升降壓穩壓器可以調節偶然出現的大幅度欠壓和瞬態過壓,但需要使用高靜態電流、降低效率,並且在更常見、常規的轉換區域產生更高雜訊。 帶通模式消開關損失/EMI達高效 LT8210是四開關升降壓DC/DC控制器,可以按照慣例使用固定輸出電壓運作,且支援新Pass-Thru工作模式(圖4),可以透過可配置的輸入電壓視窗消除開關損失和EMI。該控制器在2.8V至100V範圍內運作,可以調節發動機啟動期間最嚴重的電池壓降,也可以調節未受抑制的負載突降的峰值幅度。它提供-40V反向電池保護,透過增加單個N通道MOSFET而實現(圖5中的DG)。 圖4 支援帶通模式的升降壓控制器解決了汽車標準測試帶來的許多問題 在帶通模式下,當輸入電壓在視窗之外時,輸出電壓被調節至電壓視窗的邊緣。視窗頂部和底部通過FB2和FB1電阻分壓器配置。當輸入電壓在此視窗之內時,頂部切換開關(A和D)持續開啟,直接將輸入電壓傳輸至輸出。在不開關狀態下,LT8210的總靜態電流降低至數十微安培。不開關意謂著沒有EMI和切換開關損失,所以效率高達99.9%以上。 對於兩方面都想實現最佳效果的使用者來說,可以使用LT8210,它可以透過切換MODE1和MODE2針腳,在不同的工作模式之間切換。換句話說,LT8210在某些情況下可以作為具有固定輸出電壓(CCM、DCM或Burst Mode)的傳統的升降壓穩壓器運作,然後,在應用條件變化時,轉而採用帶通模式。對於常開系統和啟停應用而言,這個特性非常有用。 帶通解決方案提高低電流效率 圖5所示的帶通解決方案將視窗中8V和17V的輸入傳輸至輸出。當輸入電壓高於帶通視窗時,LT8210將該電壓降低至經過調節的17V輸出。如果輸入降低至低於8V,LT8210將輸出電壓升高至8V。如果電流超過電感限流或設定的平均限流(透過IMON針腳),便提供保護特性在帶通視窗中觸發開關操作以控制電流。 圖5 此3V至100V輸入升降壓控制器以8V至17V帶通輸出運作 圖6、圖7和圖8分別顯示LT8210電路對負載突降、反向電壓和啟動工況測試做出的反應。圖9和圖10顯示在帶通視窗下,實現的效率改善和可以實現的低電流操作(低電流時的效率令人驚訝)。圖11則顯示帶通模式和CCM操作之間的動態轉換。 圖6 對未受抑制的負載突降的帶通回應 圖7 LT8210對電池反接的回應   圖8 對發動機冷啟動的帶通回應 圖9 CCM和帶通操作的效率 圖10 在帶通模式(VIN=12V)下,無負載輸入電流 圖11 帶通和CCM操作之間的動態轉換 電池反接/帶通模式並行  促升降電壓無開關/雜訊耗損 為汽車電子系統設計電源時,LT8210四開關升降壓DC/DC控制器透過其2.8V至100V輸入工作範圍、內建的反向電池保護和其新帶通工作模式提供良好的解決方案。帶通模式可以改善升降壓操作,實現零開關雜訊、零開關損失,以及超低的靜態電流,同時將輸出調節至使用者配置的視窗水準,而不是固定電壓。輸出電壓的最小和最大值與例如負載突降和冷開機期間的大幅度瞬變相綁定,沒有MOSFET SOA或者由線性狀況導致的電流或時間限制。 新型LT8210控制方案支援在不同的開關區域(升壓、升降壓、降壓和不開關)之間實現乾淨快速的瞬變,因此能夠調節輸入中的大訊號和高頻率交流電壓。LT8210可以在帶通操作模式和傳統的固定輸出電壓、升降壓操作模式(CCM、DCM或Burst模式)之間切換並保持運作,固定輸出可以設定為帶通視窗中的任何電壓(例如在8V至16V視窗中,VOUT=12V)。這種靈活性使得用戶能夠在帶通和常規的升降壓操作之間切換,利用帶通模式的低雜訊、低IQ和高效率操作,在CCM、DCM或Burst模式下實現更精確的穩壓和更出色的瞬態回應。 (本文作者任職於ADI)
0

精確測距/快速對焦/低成本 飛時測距力助家電智慧化

智慧家庭的發展已經勢不可擋,而智慧家電在智慧家庭中的比例最高。智慧家電是將微處理器、感測器、網路通訊技術導入家電設備後形成的家電產品,具有自動感知家電自身狀態、家電服務狀態的功能,能夠自動控制及接收住宅用戶在住宅內或遠端的控制指令。例如透過智慧手機、智慧音箱指揮掃地機器人、電視機等家電的工作。 家電的智慧化需根據周圍環境的不同自動作出反應,不需要人為干預,這種自動感知周圍環境,必然少不了感測器的參與。近兩年推出的1D飛時測距感測器則漸漸獲得各大智慧家庭廠商的認可和應用。 測距技術各有所長 市面上常用的測距方案主要有紅外線對射管(Infrared Pair Tube)、接近感測器、1D飛時測距感測器和三角距離感測器,其原理以及優缺點如表1所示。 表1 主流測距技術比較 紅外線對射管和紅外線接近感測器兩種測距方案比較適用在智慧家庭的自動翻蓋和自動掀馬桶圈的衛浴,自動水龍頭等應用場景,因為這種場景對精度要求不高,但是高品質的衛浴和自動水龍頭也逐漸採用1D飛時測距解決方案。 1D飛時測距感測器應用在掃地機器人的障礙物識別和樓梯偵測較為普遍,也包括智慧電視的人體接近偵測,智慧燈的靠近點亮,投影儀的人眼保護以及自動對焦功能,3D智慧門鎖等應用場景。接下來具體介紹1D直接飛時測距感測器原理及以智慧電視為例的應用。 1D飛時測距感測器運作原理/優勢 以艾邁斯半導體(ams)發表可偵測2cm~2.5m距離的解決方案為例,其內部結構如圖1所示。 圖1 ams 1D直接飛時測距感測器內部結構圖 IR雷射發射器(使用的是VCSEL技術)經過光學元件打出光子,同時給時間數位轉換器(TDC)發出一個開始的訊號,光子遇到障礙物會反射回來,被模組的接收端單光子雪崩二極體(SPAD)所接收,並導致SPAD產生雪崩,進而給TDC一個停止的訊號;TDC透過計算開始和停止訊號之間的時間,即於光速已知的前提下即可算出物體距感測器的距離,實現真正的時間飛行測量(圖2)。 圖2 距離計算原理 輸出長條圖資料 感測器模組可以直接輸出長條圖資料(圖3),長條圖是資料分布的精確圖形表示,透過連續採集遇到物體反射回來紅外光的訊號進行處理,反映TDC資料的分布情況,便於距離演算法的精確計算(圖4)。 圖3 玻璃蓋板和物體反射回來的資料長條圖 圖4 資料輸出演示圖 抗油污與環境光干擾 感測器模組毋需做汙漬校準,具有抗汙漬特性。因為第一個回來的反射訊號永遠都是玻璃蓋板的返回值,而汙漬和玻璃蓋板成為一整體,作為第一個反射訊號。只不過有汙漬後,第一個反射回來的訊號會很強,相對於第二個反射回來被測物體的訊號峰值較弱,感測器模組內置演算法測的是兩次返回訊號峰值的時間差,所以汙漬不會干擾感測器模組工作。 此外,發射的紅外線光源波長在940nm,940nm的紅外光在環境光中的成分較少,干擾相對會較小。 近距遠距分段測量 感測器模組內建演算法可以根據測量的結果,自動切換近距和遠距離模式,使近距和遠距的距離計算更加的精確。 自動校準 校準分為兩種,一種是時間校準,感測器模組主要靠紅外光雷射打出去和反射回來的時間計算距離,所以對內建時鐘精度要求很高,為了避免時鐘偏差,感測器模組會自動以系統時鐘為標定即時校準。另一種是產線一次性光學校準,無需人工參與,只需保證在暗光或是無光環境下,且40cm內無遮擋,即可軟體觸發校準。 另外,感測器模組受照明角度的限制(圖5),可以放多顆1D時間飛行感測器,擴大偵測的角度。 圖5 飛時測距感測器晶片的接收角度和照明角度 飛時測距感測器導入電視應用趨向智慧化 2019年8月,華為發表榮耀電視「智慧屏」,將智慧電視互動功能大幅提升,酷炫的語音互動、手機與大螢幕間魔法互動、聯控智慧家庭、升降相機拍照等,如果搭載1D飛時測距感測器則可實現更多應用。 眾所周知,看電視的距離攸關眼睛健康,離電視越近,眼內的睫狀肌收縮力也愈強,也就愈容易造成視覺疲勞,尤其是小孩子,自控力不足,不自覺地就會靠近電視。如果電視裝有一個可以感測物體接近的功能,一旦有物體在一定的範圍內,就自動調暗或關閉顯示器背光並發出警告,提醒小孩子遠離電視,保護小孩的視力。現在市場上部分雷射電視,為了防止人靠近雷射發射端傷害人眼,已經加了距離類的感應感測器。 在智慧電視機上搭載多顆1D飛時測距感測器可以多角度偵測不斷靠近的活動物體的距離,進而做出相應的反應(圖6)。 圖6 多顆1D飛時測距感測器在電視上應用效果圖 除了人體接近偵測外,1D飛時測距感測器還可以搭配智慧電視的相機實現自動對焦功能。目前主流的相機對焦方案有兩種,一種是基於CCD半導體成像元件的聚焦技術,其利用物體光反射的原理,物體反射回來的光被相機上的感測器CCD接收,透過電腦處理,帶動電動對焦裝置進行對焦。隨著相機的象素數越來越高,對焦時間會越來越久。另一種是測距的對焦方案,使用1D飛時測距感測器,可以直接給出對焦距離,提高對焦速度,相對於其他對焦方案速度更快、成本更低。 智慧家庭的發展擴大了感測器的應用市場,而1D時間飛行測距感測器作為感測器家族的一員,有著更廣泛的應用場景,可以應用於許多日常的家電中,進一步升級智慧家庭產業,協助家電的智慧化。 (作者任職於ams艾邁斯半導體)
0

挑戰Mega柱體均勻度/RDL導孔最佳化 ECD製程異質整合多方並進

為解決包括覆晶晶片、扇入型和扇出型晶圓級封裝(WLP)等現有技術面臨的挑戰,業界已開發多種新興方案,例如高密度扇出型(HDFO)WLP、矽穿孔(TSV)和矽中介層,以及相機影像感測器(CIS)所用的TSV。新的扇出型晶圓級封裝(FOWLP)技術會利用Mega柱體(Megapillar)、細線重新布線層(RDL)、堆疊式RDL或導孔RDL和微凸塊(Microbump)等特徵,為要電鍍這些特徵,需要製程、電鍍化學以及製造設備的全面創新。例如科技廠商科林研發(Lam Research)的SABRE 3D電鍍設備,即是整合這些創新技術的平台,旨在解決與特徵內(Within-feature, WiF)均勻度、共面性、缺陷、可靠度和生產量的相關問題。 Mega柱體電鍍製程迎三大挑戰 Mega柱體是高度為50µm至200µm以上的大直徑銅柱,通常用來連接FOWLP應用中的晶片。像這樣的大型結構需要較長時間進行電鍍。但是要在高溫浴中耗費更長的時間,就需要高完整性的密封,而Lam Research透過SABRE 3D的HDFO唇型油封(Lip Seal)滿足此一需求。 Mega柱體的電鍍製程須在控制柱體形狀的同時克服高電鍍速率,以及晶粒內(WiD)不均勻度的挑戰。以下將說明SABER 3D平台中能解決此問題的重要技術。 TurboCel高特徵內對流克服金屬離子傳遞限制 依照邏輯,增加電鍍電流,應該可以提高大型結構(如Mega柱體)的沉積速率。然而在質量傳遞(Mass Transport)限制條件下,Mega柱體容易變成不符需求的圓頂形狀。因此,大多數設備都包括某種形式的攪拌器或機械槳葉,以增加特徵內(Intra-feature)對流,來克服金屬離子傳遞的限制,並同時改善電鍍速率和柱型狀況。SABRE 3D使用一種稱為TurboCell的創新技術,實現高且均勻的特徵內流動(圖1)。 圖1 TurboCell裝置(左);兩個入口速度對四個不同特徵(右)產生的效應,特徵的深寬比從1:1到非常高的深寬比(HAR) TurboCell技術可在晶圓下方保持非常狹窄的通道,根據製程將其精確控制在1mm至5mm範圍內,並注入極高流量的電鍍液。這種橫向流動的電鍍液可在基板的鍍面上產生剪切力,而晶圓會在該剪切區內旋轉,以維持嚴格的均勻度控制。TurboCell的成功取決於實現極高的特徵內對流的能力,使金屬離子能夠深入特徵內部,達到比競爭技術高出50~100%的沉積率。 SAC/SamrtDose技術實現大量製造 要在大量製造(HVM)的環境中維持此效能還需要其他的技術。其中第一個是分隔的陽極腔(SAC)。SAC採用離子滲透膜來抑制電解質中某些成分的直接對流傳遞。例如,它可以分離有機添加劑,並允許離子傳遞。透過把陽極與添加劑隔離,SAC系統可把化學品的消耗降至最低,並防止某些會影響良率的缺陷。 另一個實現大量製造的促成技術是SmartDose系統,它主要包含以Lam Research軟體和控制系統為基礎的線上化學品監測和供給。這使SABRE 3D能夠預測電鍍條件以及需求,例如一段時間之後所需的添加劑數量,並有助於把電鍍過程保持在低缺陷範圍內(圖2)。 圖2 利用SmartDose維持穩定的電鍍化學品供給,並把陽極與添加劑和製程副產品隔離,是實現大量製造的關鍵因素 三管齊下減少不均勻度 與傳統的銅柱晶粒設計相比,Mega柱體晶粒的有效區域密度變異更大。這為電鍍帶來挑戰,因為此布局會造成非常不均勻的電流分布。另一項稱為Durendal的創新技術可克服這個挑戰。Durendal是Lam Research設備的電氧化製程。與平面化類似,該製程可同時修正Mega柱體的形狀(從圓頂形修正為平坦狀),同時產生均勻的Mega柱體厚度分布。Durendal技術還適用於其他應用,例如銅柱和微柱(Micro-pillar)(圖3)。 圖3 Durendal技術還適用於其他應用,例如銅柱和微柱 減少不均勻度的第三種方法是透過電鍍液的設計。雖然以前的電鍍液可用來全面地處理多種應用,但現在出現了鎖定特定應用領域的化學方法。循環伏安法(Cyclic Voltammetry)和其他電化學特徵化技術正用於設計具有電導率和極化特性的電解質,以為TurboCell技術提供最佳的共面性。 最後,Lam Research基於軟體的預測性晶粒建模可用來模擬特定晶粒布局的共面性。它把電鍍條件納入考慮,包括一次、二次和三次電流分布,以預測凸塊高度分布。經過測試的模擬誤差低於1.5%,證明該軟體具備足夠的穩定性,可推動新的布局設計,以把共面性問題降至最低。 TurboCell實踐薄晶種電鍍 銅底切(Undercut)是電鍍細線RDL(重新布線層)的關鍵挑戰。由銅晶種(Seed)蝕刻製程所造成,該製程會腐蝕RDL線的底部(圖4),同時也給微柱帶來問題。由於大多數一般的RDL會使用約1,000-2,000埃 圖4 鍍條件與晶粒工程技術的結合,有助於克服底切問題 的銅晶種,因此利用標準蝕刻製程極具挑戰性。儘管市場上在新材料方面出現了一些進展,但Lam Research提供的解決方案聚焦於提供薄晶種(<600A)電鍍能力、TurboCell、晶粒工程以及替代的整合方法。實現薄晶種能力的主要挑戰是終端效應(Terminal Effect),這主要是指當晶種的電阻起主導作用時,會使晶圓中心相對於邊緣的電流分布有明顯變異,進而造成邊緣鍍層變厚。TurboCell裝置實現了薄晶種電鍍,這已在細線RDL應用中得到證明,可達到小於2%的晶圓內(WiW)均勻度測量值。 三條件整合達成BKM 傳統的RDL有正常或標稱的深寬比(1:1),而細線RDL有較高的深寬比(4:1)和更精細的特徵。較高的深寬比特徵通常更難潤濕,因此可能會在電鍍後造成缺失金屬的缺陷。另一個挑戰是,光阻比一般的RDL圖案更脆弱,而且在電鍍之前甚至電鍍過程中很容易損壞。 SABRE 3D整合了另一項稱為先進預處理(APT)製程模組的創新技術,該模組利用柔和的噴霧,可在電鍍之前以多種液體在真空中進行潤濕製程。此製程已取得專利,能生成均勻、且無缺陷的1.5×1.5µm細線。然而由於矽、聚醯亞胺(PI)和銅之間的熱膨脹係數(CTE)不匹配,因此細線RDL還有其他的機械可靠性問題。CTE不匹配會導致在隨後的熱處理過程中破裂或剝離(Delamination)。 Lam Research聚焦於晶粒工程來解決這個問題。傳統的銅鑲嵌製程對電遷移(EM)的挑戰已透過晶粒工程和各種銅化學配方解決。Lam Research還與客戶合作,透過使用蝕刻製程和晶粒工程技術,把10×10µm RDL的底切和線消耗降至最低。 針對細線RDL,Lam Research一直在最佳化ECD裝置和電鍍化學品,以影響晶粒尺寸和分布以及沉積雜質的數量。雖然這是一種有用的方法,但Lam Research正在考慮使用奈米雙晶銅(nt-Cu)作為替代方案。 採用nt-Cu是一項具吸引力的方案,因為它有高強度、良好的導電性和較高的銅原子擴散率。這些特性使nt-Cu成為銅-銅直接鍵合的促成因素,也是異質整合的重要鍵合方法。它還開啟了另一個機會,可與Durendal製程結合使用。Durendal可以產出具有高度平滑表面的平面晶粒,而nt-Cu可用來創建高度紋理化的奈米雙晶(Nano-twinned)結構。 電沉積nt-Cu薄膜需要適當地組合化學配方和波形最佳化,以及TurboCell條件(圖5)。Lam Research已展示了此三個條件的整合,以為細線RDL、微柱以及標準柱體實現具再現性、強韌的已知最佳方法(BKM)。 圖5 利用TurboCell最佳化、波形調變、以及開發特殊的化學品,科林研發已為沉積nt-Cu建立了最佳的製程範圍 堆疊式RDL管理鍍液抗老化 堆疊式RDL應用很容易受到導孔電鍍的挑戰,亦即未填充和空隙(圖6)。導孔的未填充會導致形狀變異,並把問題向下帶到微影步驟,因為景深(DoF)限制,而使微影出現聚焦的困難。就電鍍機制而言,小導孔比大導孔更容易填充,而未填充問題通常是低深寬比(LAR)的導孔填充。對於較小的導孔,較容易在特徵的底部角落提供加速生長,而獲得良好的超級填充條件。但若導孔較大,沉積物開始堆積的角落距離較遠,因此頂部中心容易出現填充不完全的現象。 圖6 堆疊式RDL的主要電鍍挑戰與導孔的未填充以及空隙形成有關 Lam...
0

三向直搗技術/智慧應用難關 聊天機器人起腳射門

時至今日,全球各地,從制定相關決策的政府機關,大型上市公司與夾縫求生存的中小企業,無一不提出數位轉型、扶植新創、組織創意轉型等方向。而此篇文章將試圖探討在現今的技術條件與市場期待心理下,是否能夠因為使用新技術、或者開闢新賽道進行聊天機器人的市場突圍? 聊天機器人無法滿足使用者期待 科技的快速發展來自人追求快速、方便的本性,但人類的想法與思緒十分複雜,因此聊天機器人難以全面滿足使用者的需求。回想日常生活的溝通情境,當人們在日常溝通的時候,除了說出口的字句,對方的肢體動作與眼神有沒有影響到自身的判斷?讀者是否會自行腦補一些情境?尤其跟老闆、同事或下屬進行具目的性的談判對話時,語句之外的線索顯得更重要。 聊天機器人不夠聰明的原因,是它距離人類多模態交互的能力還很遙遠。現今最普遍和流行的生活應用,當屬智慧音箱(如Amazon的Echo),一般人在買回去的當下充滿興奮感,嘗試各種指令來挑戰智慧音箱的極限後,就將它放置在屋裡的某一角落,成為一個可有可無的家用品,無法實際融入使用者的生活情境中。即便仰賴大數據和人工智慧(AI)的相關技術持續更新,用戶體驗也漸入佳境,但仍缺乏具代表性的現象級App,無法滿足多數人的使用需求。另一方面,若人們嘗試降低自己對產品的期待,單純利用聊天機器人詢問明確的問題(如天氣),請它做一件明確的事情(如播放音樂),這樣的基本需求可以被滿足。 聊天機器人技術發展三向剖析 聊天機器人是一項技術整合的產物,其中牽涉的技術範圍有電腦視覺、自然語意、機器學習(Machine Learning, ML)與深度學習(Deep Learning, DL)等。本文根據市場調研機構Gartner所提供新興科技發展週期報告,來審視各個技術目前位處的位置、困境、與待解決的問題。 電腦視覺 電腦視覺(Computer Vision, CV)目前處於泡沫化的谷底階段,意即此技術無法滿足使用者的期待,導致大家對於它的創新了無興趣。CV從實驗室的前沿技術,到如今能夠聽懂人類的指令,花了整整半個多世紀,產生瞄準在新零售、醫療、工業製造和網路娛樂等應用的期待。然而,人工智慧情緒識別離開人類的干預,對複雜情感的理解和表達能力,仍須持續的技術突破。其中,利用AI判斷並理解實體環境的CV,不僅是辨識情緒的關鍵技術之一,也被公認為未來三至五年最重要的技術之一,不僅眾多新創企業投入,大企業也紛紛利用自己既有的優勢企圖先布局並搶占先機,現階段大約聚焦在下列4個發展方向: 1. 服務平台:提供機器學習開發工具和雲端服務的商業型平台,讓開發者毋需從頭自行建構。 2. 影音資料庫:利用海量資料進行機器學習的模型訓練,將使用者上傳的相片和影音資料,與個人特徵資訊進行連結,大量使用電腦視覺技術客製化廣告投放以增加營收。 3. 硬體製造:如NVIDIA、英特爾(Intel)的晶片製造。 4. 消費性產品:近期可期待者為手機人機互動的介面。 自然語意 自然語意(Natural Language Procession, NLP)與CV處於泡沫化谷底階段。自然語意發展分為兩大階段,一種是應用傳統的分詞執行自然語言處理,第二階段則是近年由於機器學習快速發展,大家開始應用機器學習執行NLP。透過NLP所能實現的功能包含神經機器翻譯(Neural Machine Translation)、智慧人機交互(就是所謂的聊天機器人,受限於技術,目前只能在特定場景實現多輪次的對話)、機器閱讀理解與機器創作。但如前言所述,現實狀況下,人與人當面溝通,仍會有語意上的誤解,在此情況下,如何期待科技可以奇蹟似地解決這一切?自然語言處理首先透過斷詞、理解詞,接下來是分析句子,包含語法和語義的自然解析這兩個步驟,再轉化為電腦容易處理與計算的形式。上述在處理時,需耗費大量的人力成本,除此之外,還牽涉建構者本身對於所屬領域的專業度、邏輯與理解能力(所謂的人工智慧訓練師)。此外,NLP毫無疑問的是一個未來巨大的市場,無論電腦視覺或是語音識別,想要實現更人性化的功能,就需要NLP的加持,同時可預期隨著NLP技術的不斷發展,將會逐漸呈現NLP、語音與視覺融合發展的趨勢。 機器學習/深度學習 機器學習與深度學習位處在過度期望的高峰階段,各方話題與議題熱度竄升。機器學習指的是可以從資料中歸納規則的方法,是第三波人工智慧發展的代表技術,而在眾多機器學習演算法中,深度學習則是近幾年成長最快,表現最好的技術。遺憾的是,截至目前為止,幾乎每個深度學習實踐者都認同的一件事是:深度學習模型數據效果有限。要實現真正的深度學習需要滿足下列三點,這三點可以協助讀者辨別此項技術到底是人工智慧還是科幻小說。 1. 大量的數據與活動:為了使神經網路能發現新的模型,就需要有大量的數據,這些數據可以透過反覆試驗來處理和分類。 2. 運算能力:假設已有一定量的有意義數據,則需要運算能力,所幸目前已有一系列更低成本的選擇,如微軟Azure等雲端託管服務。 3. 新的敏捷方法:最後,也是最重要的一點,需要採用新的敏捷方法思考和解決問題。 大型資料庫用於訓練精確模型的必要性已成為一個非常重要的問題,同時,需要低效的人工標注數據成為一個更大的挑戰。在當前的深度學習應用中,數據的問題無處不在,由於建基於大規模數據,當滿足所需環境和約束條件時,這些系統會產出令人驚豔的成果;但若不符合上述場景,它也可能完全失效。舉例來說,若有人試圖解決大量翻譯或無人駕駛的問題,則需花很長時間來思考重要數據中的所有因素,需先建構演算法,而在過程中有很高的失敗機率。雖說如此,深度學習和先進模型的興起仍是一次革命性的進步,加速了那些針對以前無法解決的問題之技術解決方案出現,在思維上邁出重要的一步。 聊天機器人短期內破局可能性具困難度 產業中的廠商若以業務角度分析,主要分為三類: 1. 2C公司:產品直接面對用戶,如Amazon的Echo,由於未能滿足人類對於AI的美好想像,距離規模化應用上有大段距離。 2. 2B公司:如金融領域的智慧監管系統、醫療領域的醫療問答和診斷助理等。但是實際效果仍牽涉上述自然語意建構的縝密度,與場景應用設計的順暢度而有不同。 3. 2G公司:為面向政府執行行政業務類的知識庫建構和問答業務,如政府服務大廳的引導型聊天機器人、一站式辦公機器人等。 從生態系統來看,聊天機器人可分為產品,框架(Framework)和平台三類;其中框架是為了加速產品的研發,以SDK或SAAS服務的型態,提供有市場敏感度,或創意點子的需求者可快速架構特定場景和領域的聊天機器人。 短期若要大規模地拓展市場,恐怕有一定的困難度,除非在上述的關鍵技術中突然有突破口,縱然如此,各式場景應用與垂直深化探索仍不斷地激起人們對未來的想像。相信未來的聊天機器人與虛擬生命,將會以更好的體驗和型態呈現在人們面前。 (本文作者任職於優拓資訊)  
0

糖尿病管理系統智慧/效率兼具 血糖儀設計BLE建功

測量和監測是對1型糖尿病和2型糖尿病有效管理的關鍵。典型和傳統的測量技術透過使用血糖儀(BGM)進行。市場上1型和2型糖尿病患者使用的另一種技術選擇是連續血糖儀(CGMS)。連續測量的優點很多,其中之一是更瞭解人體,或者隨著時間推移,血糖如何藉由各種日常活動,如體力活動、飲食甚至睡眠不斷變化。隨著持續而非間歇式更深入瞭解人體行為,可進行相應治療和改善。 由於這些儀器通常在皮下測量組織液,直到最近還需定期校準血液,也就是「老派」的戳手指。然而隨著技術進步,部分CGM現在毋需對全血進行校準。 連續血糖監測系統的微電子性質通常相同,僅有少數例外。且由於這些裝置通常為穿戴式,因此尺寸問題亦須顧及,意味著需要高度整合加上有效電源管理,以提高所用半導體元件的最佳效能。 除了測量和監測外,胰島素輸送技術也在推進,閉環系統將連續監測結合藉由人造胰腺輸送的胰島素,為數以百萬計的糖尿病患者帶來更好、更方便的醫療保健及更樂觀的前景。 血糖測量技術層層遞進 傳統的BGM可以在藥房或任何藥店連鎖店購買。使用附帶的刺血針裝置(非常小的細針)刺破手指、流出一小滴血,再將血與插入血糖儀的試紙接觸。 當血液樣本與試紙產生化學反應時,會向血液樣本施加AC或DC激發電壓或電流,而結果由數據轉換器讀取。短暫等待微控制器完成計算後,最終的血糖水準將在螢幕上顯示(圖1)。 圖1 簡化的血糖儀(BGM)框圖 更先進的血糖儀具有藍牙低功耗(Bluetooth Low Energy, BLE)連接功能,可將分散的血糖結果傳輸至智慧手機,其通常支援雲端連接的應用程式。而結果可予以儲存,且家庭成員或護理人員可隨時查看,以改善治療效果。 CGM電路系統/電池選擇考量因素 當今,連續血糖儀的系統架構將類比/數位(A/D)和數位/類比(D/A)以及輸入/輸出功能整合到單片矽中,通常是特殊應用積體電路(ASIC)類比前端(AFE)或專用標準產品(ASSP),通常在一個小的晶圓級晶片尺寸封裝(WLCSP)中結合1個藍牙低功耗(BLE)和微控制器(MCU),如RSL10有助於解決挑戰,使長期穿戴的裝置對用戶來說盡可能不顯眼和實用。 除了電路外,另一個影響尺寸的主要因素是所需的電池。如掌上型BGM中,通常使用一個或兩個AA、AAA或AAAA電池。這些對於CGM而言太重且太大,因此,電池的尺寸和化學性質通常決定鈕扣電池的外型尺寸。 為了切實可用,必須審慎管理系統電源。峰值電流和總電流必須最小化,因為從鈕扣電池獲得的最大電流比AA電池大大減小。另一個考慮因素是放電曲線。如若使用氧化銀化學電池,通常會產生最大1.55V的電壓,使用壽命降至1.2V;若使用二氧化錳化學電池,則額定電壓為1.5V,使用壽命降至1.0V。 胰島素注射趨向智慧化 胰島素以往是在需要時使用臨床級注射器和針頭自行注射,就像在診間接受注射一樣。現在有很多種胰島素已經上市銷售,快速、短、中、長效類型的胰島素可以單獨注射或根據需要混合使用。 最近皮下注射的替代品已進入市場。有一種替代方法是噴射式注射器,其以細流將胰島素輸送並進入皮膚。另一種是注射器筆,藉由一根超細針頭自動分配胰島素,使利性和舒適性大幅提升,同時還能減少注射恐懼感(圖2)。 圖2 智慧注射器筆架構示意圖 這些替代裝置實際上更趨於機電化和「智慧化」,就如同傳統血糖儀。至於注射筆的設計採用微控制器和藍牙低功耗無線電,目的是捕捉和報告離散的注射時間、注射量等等。 胰島素泵浦改善輸送效率 胰島素泵浦可精確控制1型和某些2型糖尿病患者的胰島素輸送,但更常針對1型糖尿病患者。這些泵浦是方案的關鍵部分,最終在「閉環」系統—人造胰腺中發揮作用;其採用胰島素泵浦接收連續測量血糖數據的系統,再加上適當輸送控制和演算法創建人造胰腺,此為糖尿病管理的關鍵。 使用CGM代替多次刺手指,這是一種利用連續數據而不是幾個離散數據點的較佳測量方法。同樣地,能避免一整天低血糖和高血糖是一大進展,有了人造胰腺意味著患者不再需要擔心夜間低血糖、睡眠期間低血糖水準或測量/注射的頻率。這可以大幅改善他們的健康、生活品質,還可能延長壽命(圖3)。 圖3 簡化的胰島素泵浦系統圖 合理想像,採用自動輸送胰島素需要依靠系統的安全性、可靠性和準確性,這使得裝置製造商於選擇技術、系統和元件供應商的過程至關重要。 人造胰腺連結雲端監測健康 人造胰腺的物理設計有很大差異,儘管戴在身上或配置在使用者的皮帶上。圖4所示架構描述常見的方案,利用高度整合的ASIC,含所有類比前端模組、電源管理、MCU或控制模組以及一個整合的藍牙低功耗無線電以幫助通訊。所有系統都包括某種類型的胰島素儲存裝置,提供適當驅動器機制的泵浦或致動器系統,藉由皮下針頭輸送胰島素的導管或套管系統,以及各種類型的感測器(如運動、壓力、溫度、血糖)。離散或未連接的測量系統主要區別,在於連續和閉環回饋。 圖4 人造胰腺圖 除了血糖感測器以外,還可以使用幾種感測器,如用於人體穿戴裝置的低重力加速度計和溫度感測器來監測活動水準,以改進劑量演算法。這些感測器持續提供有關身體運動和外部環境的資訊,同時還提供有關血糖水準的相關資訊。人工智慧(AI)可用來估計所需的近期和中期胰島素治療。 大多數系統使用藍牙低功耗與連接到雲端的智慧手機進行通訊。但有些人使用無外觀設計的可攜式Pod與單獨的控制系統,亦稱為「個人裝置管理器(PDM)」的系統通訊,在此情況下,PDM用於用戶間交互作用,並可作為開環(非閉環)控制系統,其亦通常藉由Wi-Fi或LTE提供雲端連接的功能。 藉由雲端連接,護理人員可收到通知並介入追蹤。此外,藉由雲端運算,可從大數據分析和人口管理獲得更多的功能。而在某些情況,除IC整合外,甚至被動元件也與高度整合的半導體ASIC整合在3D混合模組中,體現尺寸、重量和性能等優勢。 低功耗藍牙供電 實現高效傳輸 回到對鈕扣電池運作和低功耗工作需求,諸如安森美半導體(ON Semiconductor)的RSL10藍牙5認證的無線電系統單晶片(SoC)之類的元件可提供適當選擇方案實現與人造胰腺方案的通訊。 RSL10提供低功耗,經嵌入式微處理器基準協會(EEMBC)驗證,且近期獲用於可植入式及生命相關的醫療應用認證,適用於低功耗電池供電的裝置;該元件搭載Arm Cortex-M3處理器和LPDSP32數位訊號處理器,提供所需的穩固性以支援複雜設計;板載384KB快閃記憶體和160KB RAM為用戶提供靈活的編程選項。此外,RSL10還為藍牙低功耗提供機會,並具有開發韌體空中升級(FOTA)應用程式的能力(圖5)。 圖5 RSL10系統框圖 此外,該元件具備額外好處,如安森美的藍牙低功耗矽智財(SIP)可用於低功耗的ASIC,進而滿足涵蓋各感測器和介面的需求。由於測量系統和胰島素輸送系統中的數位/類比(D/A)和類比/數位(A/D)轉換很普遍,因此需客製化,像是在胰島素輸送系統中,可能僅需藍牙低功耗傳輸,進而減少基頻RF和控制器成本。許多應用皆為大體積或一次性,因此關鍵在於矽,需盡可能使其具高效能以節省成本和尺寸。 (本文作者為安森美半導體無線及醫療分部訊號處理業務行銷)
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -