碳化矽MOSFET具有較低的導通電阻,可以在開關狀態之間快速地來回切換。因此,它們比絕緣閘雙極性電晶體(IGBT)消耗的功率小得多,IGBT具有較慢的關斷速度和較高的關斷開關功率損耗。此外,碳化矽的寬能隙(Wide Bandgap)使碳化矽元件能夠在高壓下運轉。相反地,矽基MOSFET不能同時實現高阻斷電壓和低導通電阻。因此,碳化矽元件在高功率應用中變得越來越重要。
由於碳化矽元件具有較高的功率水準,因此設計人員必須評估碳化矽元件本身及其閘極驅動器電路。碳化矽技術仍是較新的技術,因此目前在各種條件下的元件性能還沒有得到充分的發揮。
評估平台將協助設計工程師評估在轉換器電路應用中連續運轉的碳化矽MOSFET、碳化矽肖特基二極體以及閘極驅動器電路。有助於加速碳化矽功率轉換器的設計週期,進而加速最終產品上市。
功率轉換電路設計挑戰
為了使功率輸出和功率轉換電路的效率最大化,設計人員必須確保:
- 電源設備可在額定功率和電流下運行,並提供負載足夠的功率。
- 電路將內部功率損耗降至最低,以獲得最大效率。
- 該設計包含用於碳化矽功率元件的保護電路。
- 印刷電路板(PCB)布局大幅減少寄生電感和電容。
- 電磁干擾(EMI)輻射在允許範圍內。
- 該設計使用最少的無源元件,有助於降低成本、尺寸和重量。
- 閘極驅動器有助於實現上述目標,並可將熱能維持在規定的溫度額定值內。
圖2則為閘極驅動評估平台的簡化圖。其電源配置為半橋輸出式,未顯示的去耦電容器靠近碳化矽元件放置,以在元件切換期間保持電源電壓;去耦電容器和碳化矽元件兩端的電容器作為低通濾波器,以消除直流電源線上的開關雜訊;下方則為閘極驅動環路中的寄生電容和電感。
閘極驅動評估平台可幫助設計人員應對這些挑戰。該平台可以連續在高功率下運轉,以表徵所選碳化矽MOSFET和二極體的性能。該平台還可以在多種測試條件下比較不同的閘極驅動器,並可評估閘極驅動器的熱能表現、抗電磁干擾能力,以及驅動功率元件的能力,以使其高效運轉。最後,該平台可對設計進行分析,以提高效率、減少EMI、降低成本、減小尺寸和減輕重量。
閘極驅動評估平台本質上是一個功率級參考設計平台,它由一個主機板和一個以半橋配置的兩個碳化矽MOSFET-碳化矽肖特基二極體對組成。半橋電路在800伏直流總線電壓下可輸出最大5,000瓦的功率。主機板可以容納兩個獨立的閘極驅動器模組板,每個開關位置一個。因此,不同的閘極驅動積體電路和閘極驅動設計可以快速方便安裝在主機板上,以評估閘極驅動性能以及驅動器如何影響輸出功率。
閘極驅動評估平台的第三個主要元素是熱管理,其針對散熱器和冷卻MOSFET-二極體對的風扇。散熱器風扇子系統使功率電路能夠在頻率高達200kHz的MOSFET二極體對切換時,連續輸出高達5kW的功率。
閘極驅動評估平台的印刷電路板布局最小化迴路電感和電源電路與閘極電路之間的耦合;兩個閘極驅動電路則允許獨立評估頂部和底部閘極的驅動品質。
碳化矽MOSFET和二極體的選擇以及閘極驅動器的選擇是功率轉換設計最重要的關鍵。MOSFET必須具有電壓、電流和功率規格,才能滿足轉換器的要求。閘極驅動器有更複雜的要求。它應具有較寬的電壓範圍和足夠的輸出電流來驅動功率MOSFET。
圖3使用降壓轉換器作為負載的閘極驅動器開關損耗測試。此處顯示的是閘極驅動電壓、MOSFET漏源電流和MOSFET漏源電壓。
推薦的驅動電壓為15至20V,以便將MOSFET切換到導通狀態;推薦電壓為0至-5V,以便將MOSFET切換到關閉狀態。閘極驅動器的峰值輸出電流範圍為1至15A,具體取決於MOSFET的功率處理能力。驅動器需要提供高脈衝電流,以減少開關瞬態期間MOSFET的開關損耗。此外,高持續電流和較小的外部閘極電阻可降低碳化矽MOSFET的高頻開關期間的驅動器溫度。
快速碳化矽MOSFET開關引起的高dv/dt使得高共模電流將流經閘極驅動器和功率轉換電路的其餘部分;高共模電流會影響控制電路中的參考電壓節點,進而導致誤操作。共模電流的大小由MOSFET dv/dt和共模電流路徑中的阻抗決定。因此,閘極驅動器積體電路及其電源都需要較高的隔離阻抗以減小共模電流。而閘極驅動器的隔離電容應小於1pF,電源的隔離電容則應低於10pF。
閘極驅動器實現電路穩定運作
傳統的做法是由光耦合器隔離,新的整合電路技術則可以採用電感或電容隔離,這些新方法被稱為數位隔離器技術。光耦合器和數位隔離器既有優點也有缺點—光耦合器提供電流,進而使其輸入不易受到EMI的影響。但是,光耦合器不能處理像數位隔離器一樣高的資料傳輸速率,並且會帶來更長的脈衝寬度失真時間。脈衝寬度失真時間是指透過驅動器積體電路的訊號延遲時間。在半橋電源轉換拓撲中,過多的延遲會產生波形失真和低頻雜訊。
光耦合器的性能隨驅動器電壓、溫度和設備壽命改變而變化。使用數位隔離器的驅動器在整個溫度範圍內具有更穩定的參數。由於數位隔離器在電壓輸入下運轉,因此它們更容易受到EMI的影響。但總體來說,與使用碳化矽MOSFET功率轉換電路閘極驅動器中的光耦合器相比,數位隔離器更穩定的運轉參數使其成為更好的選擇。
對於大功率電路,必須採用保護機制來防止元件熱失控以及由於故障而損壞元件和電路。強烈建議採用帶有保護電路的閘極驅動器積體電路。閘極驅動積體電路應具有去飽和(De-sat)保護,故障情況下的軟關斷、米勒(Miller)鉗位電路和欠壓鎖定(UVLO)。
發生負載短路時,去飽和保護電路會關閉MOSFET。軟關斷可避免較大的瞬態電壓過衝,並在直通故障期間(兩個MOSFET同時導通)關閉MOSFET。Miller鉗位電路透過從寄生漏極-閘極電容中釋放電流來避免直通條件,進而避免閘極電壓的瞬態上升。鉗位電路可防止MOSFET在應處於關閉狀態時導通。如果用於閘極驅動器輸入或隔離輸出電路的電壓供應過低,則UVLO電路會關閉閘極驅動器,以保護MOSFET免受錯誤的開關時序的影響。這些保護電路確保更堅固和安全的電源轉換電路。
PCB板布局對動態電路(如高效功率轉換電路)的性能則有重大影響。PCB走線和接地層的寄生電容和電感會增加電路中的寄生電容和電感;閘極驅動迴路中的寄生元件會降低MOSFET的開關性能;閘極-源極電容則迫使閘極驅動器積體電路產生更高的驅動電流。雜散電感會增加閘極-源極電壓的過衝,並導致在MOSFET開關期間產生振鈴。
為了減少雜散電容和電感,可將閘極驅動器、閘極電阻和去耦電容靠近MOSFET閘極,使閘極路徑盡可能較短。透過將閘極返回路徑直接布置在閘極電源走線的正下方,可將環路電感降至最低。最大化MOSFET閘極走線和漏極走線之間的距離,以減小閘極-漏極電容的大小。這種做法會切斷進入閘極的電流,進而降低米勒效應。
此外,電源轉換電路下方的接地層會增加電容耦合;避免在使用MOSFET開關的功率轉換電路中使用接地層。所有這些PCB布局建議均已在閘極驅動評估平台中實施,以避免訂製測試板的設計、布局和測試(圖4)。
閘極驅動評估平台透過使用不同的閘極驅動積體電路,可以方便比較開關損耗和開關瞬態,並考量在連續開關條件下運轉的降壓轉換器,評估閘極驅動器的情況。降壓轉換器的運轉頻率為100kHz,輸出為2.5kW。
驅動器整合電路的驅動能力和所使用的外部閘極電阻將影響碳化矽MOSFET的開關瞬變和整體開關損耗。在此測試中,第一個閘極驅動器的額定驅動電流為14A,第二個閘極驅動器的額定驅動電流為2A。每個閘極驅動器均使用10Ω和1Ω閘極電阻進行測試(圖5-1)。
10Ω閘極電阻消除了閘極驅動器性能上的差異。10Ω的閘極電阻會降低MOSFET的瞬態開關速度,進而增加開關損耗。高輸出電流驅動器和低輸出電流驅動器之間的差異更加明顯。當以較低的閘極電阻使用高輸出電流驅動器時,MOSFET的開關速度更快。與較高的閘極電阻相比,較低的閘極電阻確實在開關轉換期間產生更多的振鈴。設計人員必須找到閘極驅動器、閘極電阻和MOSFET的較佳組合,以大幅降低開關損耗(圖5-2)。
閘極驅動器評估平台可藉助散熱器和風扇來評估驅動器積體電路的熱能表現,這些散熱器和風扇使MOSFET能夠在連續開關輸出狀態下運轉。該平台還可用於測試驅動器保護功能。
簡而言之,閘極驅動評估平台是一種有助於評估碳化矽元件和閘極驅動器的工具。透過將閘極驅動模組插入主板,設計人員可以很容易比較不同閘極驅動器積體電路的效率和熱能表現。設計人員可以使用評估平台上的PCB布局技術和推薦元件來克服碳化矽元件的設計挑戰,進而開發高效、熱可控和受保護的電源轉換電路。因此,該評估平台可以更快設計高效的功率轉換電路,並加快產品上市時間。
(本文作者皆任職於Littelfuse)