電子暨資訊技術實驗室(CEA-Leti)日前於ISSCC 2020上發表兩篇能量採集系統的論文,各自描述了一款30nW MPPT自相位調變SECE壓電能量採集晶片,以及無外接元件的電磁機械能量採集晶片。第一款晶片的能量轉換效率可達94%,能量頻寬則提高446%;第二款晶片的轉換效率則為95.9%,可收集的能量比現有技術提升460%。
首篇論文主要作者Adrien Morel表示,從振動中擷取能量的主要問題在於能量採集器的頻寬,其能接近採集器的共振頻率範圍較局限。事實上,振動頻率無法預測,其可能會隨時間變化,與能量採集器的固定共振頻率關係不大。
首篇論文主要聚焦於小規模(即人體內)應用的能量採集;第二篇論文則針對大型裝置,如家庭自動化(Domotics)及航空應用裝置。首篇介紹一個系統,透過光束上的壓電材料將振動能量轉為電能;第二篇論文則介紹了如何透過線圈中的振盪磁鐵,將能量轉為電能。
壓電能量採集IC的研究團隊設計一種自調變介面,可收集採集的能量,亦可彈性調整採集的共振頻率,使採集頻寬提升446%。能量採集與調諧為自主供電,兩者總功耗(約1µW)相較環境中振動(100µW至1mW)採集的能量至少低兩個單位,Morel表示該電路端到端效率高達94%,相較文獻中發現的其他電路,展現較高效率。
第二篇論文主要作者Anthony Quelen表示,超乎預期的95.9%端到端效率是能量擷取和轉化效率之間的關鍵因素,而實時輸入阻抗器可大幅提升採集效率;此外,使用採集線圈的新型升壓架構可將轉換效率最大化。該論文描述電磁能量採集器IC的製造過程,達到95.9%的最高端到端效率,且大幅降低物料成本,相較全橋式整流器,在週期性振動及衝擊模式中,能量擷取量分別比現有方案提升210%及460%。
能量採集可輔助或替代電池,讓感測器節點部署更不受限制,亦可加速無電池感測器開發,將其用於高溫等惡劣環境或人體及飛機難以接近之處。同時,本次低成本IC效率的最大化為推動部署多感測裝置於物聯網的關鍵因素。