機器視覺在製造業應用存在已久,但過去的機器視覺本質上是以規則為基礎的專家系統(Rule-based Expert System),不具備自主學習的能力,能處理的問題範疇也較為專一。這也使得機器視覺的系統整合商(SI)規模普遍不大,但在特定領域有非常深厚的技術累積。以機器學習(ML)為基礎的機器視覺系統,則可能改變這個產業風貌,讓SI更容易跨入不同領域。
研華網路暨通訊事業群資深協理林俊杰指出,機器視覺在製造業應用已經有相當長的一段歷史,且隨著檢測對象不同,分化出許多次領域,例如針對電子元件、電路板的自動化光學檢測(AOI)、針對產品組裝的視覺校準/對位,乃至成品/半成品的外觀瑕疵檢測等,都可以歸類於機器視覺的範疇。但現有機器視覺系統的核心,多半是以規則為基礎的軟體程式,當工業相機拍攝到過去從未見過的影像,取得的特徵值無法對應回既有的軟體系統時,就會很容易出現誤判或無法識別。
這使得機器視覺系統的設計規畫跟布署,變成一項非常仰賴專家的工作。唯有針對某一類應用有深入研究,並且累積了大量經驗的SI,才能寫出符合生產線需求機器視覺軟體。而且,某個特定領域的專家,要跨到其他機器視覺的領域,也不是那麼容易的事情。
基於機器學習(ML)的機器視覺,則是完全不同的典範。一套辨識模型或演算法,經過不同的資料集訓練,就可以辨識出不同型態的圖樣,而且隨著工業相機取得的影像資料越多,累積的訓練資料增加,系統辨識的準確度還有機會進一步改善。
另一方面,對機器視覺SI業者而言,基於ML的視覺系統還有更容易跨領域應用的優勢。例如一個經過訓練的免洗杯辨識演算法,只要稍加調整跟再訓練,就可以用來辨識不同種類的杯子,例如玻璃杯、馬克杯,因為這些杯子都有一些共通的特徵值。如果是傳統的機器視覺軟體,開發過程就得從頭來過。
不過,對大多數基於機器學習的系統來說,訓練資料的數量跟品質,還是許多開發者所面臨的最大難題,基於機器學習的機器視覺也不例外。現在許多網路大廠都已經提供雲端訓練工具,因此,開發者要訓練自己的模型,門檻已經比以往大為降低,但要取得足夠且高品質的訓練資料集,還是要投入很多資源。
近幾年中國掀起人工智慧熱潮,也促成一個新的行業–資料標籤公司誕生,但這些專門提供資料標籤建置的服務業者,通常沒有足夠的能力處理工業製程中所拍攝的影像。舉例來說,金屬加工件的邊緣出現毛邊,但程度要多嚴重才應該被判定不良品,就只有那個行業的老師傅能準確判斷,不在該行業的標籤建置人員很難做好這項工作。因此,即便是採用機器學習技術,SI想要跨到新的領域,還是有一定門檻要跨過。
此外,目前機器學習最理想的開發平台是GPU,因為GPU有最好的軟體適應性,設計迭代最方便,但如果是要布署到生產現場,GPU可能就不是那麼理想,因為GPU的功耗較高,有時還是需要搭配主動式散熱。但很多生產現場是不允許散熱風扇存在的,例如烤漆作業區,因為環境裡有粉塵,不只容易導致風扇故障,萬一有火花產生,還有可能引發爆炸。
相較之下,FPGA是比較適合布署在現場的運算硬體平台,但FPGA的設計迭代過程比GPU耗時,軟體修改後,硬體描述語言(HDL)也要跟著調整,才能實現最佳化。因此,機器視覺系統要改以機器學習為基礎,並大量普及到工業現場,還需要一些時間來醞釀。但整體來說,因為以機器學習為基礎的機器視覺,對各種應用情境的適應能力較佳,因此長期來看,SI或軟體開發者應該還是會逐漸轉向機器學習。