SiC蕭特基二極體
開創功率轉換新局面 SiC MOSFET邁入主流市場
SiC提高功率轉換效能
眾半導體商因應此趨勢推出各種方案,例如英飛凌便展示了CoolSiC MOSFET系列的相應功能集以及搭配的驅動器IC,其支援入門級應用。例如,光電變頻器、不斷電系統(UPS)、驅動器、電池充電基礎設施以及能源儲存解決方案。
在未來,將有越來越多的功率電子應用無法僅倚賴矽(Si)裝置滿足目標需求。由於矽裝置的高動態損耗,因此藉由矽裝置提高功率密度、減少電路板空間、降低元件數量及系統成本,同時提高功率轉換效能,即成為一個相互矛盾的挑戰。為解決此問題,工程師們逐漸開始採用以碳化矽材料為基礎的功率半導體來部署解決方案。
SiC蕭特基二極體長期以來持續創新,像是英飛凌於2001年推出首批600V產品,並持續擴大包括650V與1200V電壓等級的產品組合,同時也開發並發表新世代產品,其單位晶片面積具有更高的電流處理能力,同時降低了功率損耗,目前已生產數億個SiC二極體晶片並供應至市場。
在這十多年來,諸如太陽能變頻器中的MPP追蹤或開關式電源供應器中的功率因數校正等應用中,使用Si IGBT加上SiC二極體或具有SiC二極體的超接面Si MOSFET已成為最先進的解決方案,可實現高轉換效率及高可靠度的系統。市場報告甚至強調SiC二極體正進入生產率的平原期。SiC技術中的量產技術、生產品質監控以及具有優異FIT率的現場追蹤記錄,為採用包含SiC MOSFET之產品策略奠定了下一步基礎。
SiC MOSFET/Si IGBT 效能大有優勢
SiC半導體材料中的電晶體功能,為整體電力供應鏈(從能源產生、傳輸及分配給消費者)的能源效率(以較少能源獲得更多能源)提供了更大的潛力。
讓我們仔細研究一下SiC MOSFET與Si IGBT的效能優勢。圖1顯示了先進的矽解決方案範例:如果目標為高效率與高功率密度,具有650V與1200V Si IGBT的3-Level T類拓撲的一個相位腳通常會用於三相系統,例如光電變頻器與UPS。採用此種解決方案,效率最高可達到20~25kHz的切換頻率。由於裝置電容較低、部分負載導通損耗較低,以及沒有關斷尾電流,因此1200V SiC MOSFET的電流損耗比1200V Si IGBT低約80%。在外部切換位置使用1200V SiC MOSFET可大幅提升效率,並在指定的框架尺寸中達到更高的輸出功率。
圖1 先進的矽解決方案範例
進一步提高切換頻率會導致矽基解決方案效率與最大輸出功率迅速降低,但SiC MOSFET的低切換損耗不會有此問題。透過此範例的證明,工作頻率高達72kHz的三倍仍帶來比24kHz運作之矽解決方案更高的效率。因此可縮減被動元件實體尺寸、減少冷卻作業,並達到更低的系統重量與成本。
另一個三相電力轉換範例是電動車的充電基礎設施。1200V SiC MOSFET可為DC-DC轉換級建構一個LLC全橋級,其中典型的矽解決方案倚賴650V Si超接面MOSFET,需要兩個串聯的LLC全橋來支援800V的DC鏈路。而四組SiC MOSFET加上驅動器IC即可取代八組Si超接面MOSFET加上驅動器IC,如圖2所示。除了零件數量減少及電路板空間縮減之外,還可以使效率達到最佳化。在每個導通狀態下,相較於Si解決方案中的四個切換位置,SiC MOSFET解決方案僅打開兩個切換位置。在快速電池充電中使用SiC...