- Advertisement -
首頁 標籤 POL

POL

- Advertisment -

建置成本/節能利用最佳化 資料中心功秏/效率錙銖必較

然而,最終用戶要著眼大局,更關心整個系統或製程在遵守環境義務的同時,能夠盈利的效率。他們明白,倘若所有生命週期成本都計入其中,在功率轉換過程的一個小要素,即便非常專注於降低其損耗並不一定會導致明顯整體成本節省或環境效益。 另一層面,將更多電源轉換裝置整合到更小體積(增大其「功率密度」),可以更高效地利用工廠或資料中心的占地面積,並利用現有資源和成本實現更多產出。 本文將研究相較增大功率密度和提高系統效率,提高功率密度百分點在節能、購置/處置成本和機櫃/占地面積利用率等層面的實際成本。 製造商藉提高效率 降低營運壓力 在功率電子的世界,效率是一個容易概念化的術語,100%效率為好,而0%為壞。但是,讀者必須仔細設置自身的參考基準。資料中心整體電氣效率接近0%,從電網提取的所有功率幾乎都轉換為伺服器葉片、電源和冷卻系統中電子元件中的熱量。然後,將電力的美金價值轉換為美金收入可能是1,000%的效率,大多數行業都是如此,這是所有人的期望,否則,如果讀者想節省成本和挽救地球,同時也要賺錢,真正問題是如何最小化總功耗,同時以最大限度提高生產力。 資料中心管理者完全知曉這些,他們需要面對日常壓力來提高資料處理能力和速度,同時保持盡可能低電費,並從資本投資中獲得回報。他們別無選擇,只能以增加數千瓦的功率耗散來添加伺服器,但可以演算容量增大帶來的附加價值抵消額外能源和資本成本。在工業領域,如果需要另一台100kW馬達,並用於生產更多可銷售產出,馬達驅動及其電源則是不可迴避之開銷。在所有產業中,電源是一種必須的罪惡之物,本身不會增加商業價值,其耗費的營運成本和功率都被視為降低了利潤。因此,焦點自然而然地會將注意力轉向功率電子製造商,他們需要承擔透過提高電氣效率來減少損耗的壓力。 拓撲架構重新設計以實現零損耗 功率轉換效率似乎很容易定義,人們都可以引用公式「輸出功率除輸入功率之百分比」,兩者之間差值為功率轉換器消散的熱量。問題是,如果不涉及功率水準,以及它們如何隨操作和環境條件而變化,而將效率作為轉換器比較參數,此時效率沒有任何意義。往往這會導致一些「創造性」規格,挑選出其中亮點,以展現裝置最好的部分。很少有轉換器在接近其最大額定功率時操作,因此效率通常設定為在最大額定負載50~75%左右達到峰值,並且某些曲線必須在零負載時降至零效率。在輕負載時轉換器設計可能存在高不確定性,因此在待機條件下電源功耗可能會比其他電源多一倍(圖1)。負載為5%時,A線表示轉換器功耗是B線的三倍以上,因此輕負載功耗對總能量消耗有顯著影響。 圖1 輕載時效率在同類功率轉換器之間差異很大 幸運的是,業內有一些標準可以用來規定效率曲線形狀,例如具有不同級別的「80 PLUS計畫」中,「鈦」級為最高,要求在50%負載時具備最低94%效率,在10%負載時最低90%效率,這些是用於115V系統的效率,對於230V系統,上述參數分別是96%和90%(圖2)。 圖2 80-PLUS計畫的效率目標—115V系統 這些限制很難實現。在2004年構想80 PLUS認證計畫時,在50%負載下實現最低水準80%效率已經足夠困難,但是要達到94%的鈦級則意謂著需要減少電源四分之三的損耗。效率僅提高14%,而額定功率為千瓦級的電源必須將損耗從250W降低到64W,這不能透過對現有設計進行微調來實現,因此必須對轉換器拓撲架構進行徹底重新考量。不再使用傳統二極體,轉而採用同步驅動MOSFET,相移全橋和LLC諧振拓撲架構等技術都被用來限制開關轉換期間的損耗,並且出現諸如SiC和GaN等全新半導體技術,以實現更快的開關速度但不會造成功耗損失。即便是不在市電的低階橋式整流器也已經演變成MOSFET的混合布置,這構成功率因數校正電路必要的部分。這些都需要一定成本,也有採用新技術帶來的風險。即便如此,從供需角度看,客戶和電源製造商要求在螺旋式上升,以實現更高效率,達到99%甚至更高。 追求高效率而降損耗所費不貲 隨著功率轉換效率接近100%,提高效率的難度成倍增加。從97%到98%意謂著損耗減少了三分之一,從98%到99%意謂著將損耗減少一半。在任何轉換器設計中,將損耗降低50%可能會要求設計從頭重新開始,使用更複雜的技術和更昂貴的元件是唯一途徑,而這通常是以犧牲尺寸為代價。1kW電源效率為98%時,僅消耗20.4W功率(圖3)。而要花費多少努力才能使損耗達到10.1W,使效率提高到99%?考量一下1kW的負載,將效率提高1%僅僅可以節省10.1W,但這需要多少設計工作量? 圖3 1kW功率轉換器中的損耗與效率 當然,所有節能都值得珍惜,但是更需要放寬眼界。在美國,工業用電平均價格約為每千瓦小時7美分。如果以1kW電源壽命為例,在100%正常執行時間下可操作5年或大約44,000小時,減少10.1W損耗可以節省大約31美元,而負載功率的成本超過3,100美元。更換電源會導致擁有成本、購買和鑑定費用、安裝成本以及通常與數百個元件、包裝和運輸相關的碳足跡。然後是舊裝置的處置成本,以及新尖端產品的功能風險。假設上一代電源可靠性仍然足夠,那麼與保留舊產品相較,很難看出這些相關成本與31美元的節省相比如何抵消。單純為了效率參數而追求更高效率可能是一項成本高昂的事情。 裝置縮小尺寸提高功率密度 為了降低內部溫度並提高演算的壽命/可靠性,也許有必要提高功率轉換器效率,但這僅在外殼和冷卻保持不變情況下才有效。有一個古老的經驗法則,即電子元件溫度每升高10℃,其壽命就會縮短兩倍。而依據可靠性手冊,在溫度升高10℃時,半導體元件失效率將增加約25%,電容器失效率將增加約50%。但是現代電子產品極其可靠且經久耐用,因此這些都是相對於非常長使用壽命和高可靠性而言的百分比變化。例如,從歷史上講,功率電子裝置的冷卻設置目標,是將資料中心入口處的理想溫度保持在21℃左右,但是英特爾(Intel)和其他公司的研究表明,該溫度可以適當提高,但不會顯著影響系統可靠性。APC的一項報告引用了美國供熱和空調工程師協會(ASHRAE)的預測,當入口溫度從20℃升高至32℃(68℉至90℉)時,總體裝置故障率僅增加1.5倍(圖4)。據稱,資料中心額定操作溫度每升高1℉,就可以將相關冷卻成本降低約4%,因此減小主機殼尺寸,允許包括電源在內的裝置在更高溫度下操作,可以真正節省成本,同時還可以釋放機架空間。 圖4 裝置可靠性與入口溫度關係 使較小電源在更高溫度下操作的另一推動因素,是採用以SiC或GaN材料製成的寬能隙半導體。這些元件操作溫度額定值比矽元件高很多,特別是對於SiC,允許裸晶在高達數百℃溫度下操作。 功率轉換各方紛尋最佳解 功率轉換裝置供應商可能會以特定條件下的效率規格來互相競爭,但對最終用戶而言,重要的是其製程的生產率和盈利能力。當然,籍由減少能源消耗來節省成本是一件好事情,但是透過增加機櫃中或機架上裝置功率密度,並提高每單位體積的生產率而獲得成本節省可能更具吸引力。資料中心和製造設施中的地板空間具有「美元密度」,這是為貢獻一定收入所必須達到的貨幣價值,以千美元/平方英尺為度量,因此縮小電子裝置尺寸以提供更多生產空間是實際收益。如果這意謂著在生產需要擴展時提供完整的額外機櫃,則實現的短期和長期資金節省更多。 仰仗相關的功率轉換器可實現電子裝置更高功率密度,這些促使系統架構師將功率密度視為越來越重要的指標。但是,與端到端產品電氣效率不同,整個系統的功率密度不易比較,需要包括哪些內容?在典型工業機櫃中,可能有開關裝置、連接器、安裝在主機殼底座的EMI濾波器、生成中間電壓的AC-DC轉換器、大電流匯流排、負載本地處的DC-DC轉換器、風扇及其自身電源和安裝硬體,有時甚至可能包括空調裝置。在控制機櫃中,負載可能是獨立式,也可能是馬達,在這種狀況下,功率轉換裝置體積占整個空間很大一部分,任何空間尺寸的節省都意謂著可以容納更多控制電子裝置。但是,這樣回報會減少,因為添加額外裝置總會需要更多功率。控制櫃還可能受限於使用標準化硬體,如用於裝置安裝的DIN導軌,供應商推出了越來越窄小的產品,而輸入/輸出連接器尺寸的實際應用通常定義了其最小值。現在30W AC-DC寬度已減小到21mm左右,而480W裝置寬度大約為48mm(寬)×124mm(高)。機櫃中如果包括冷卻系統,其中可能包括一系列風扇,由於入口溫度不能確定,因此功率轉換器的額定溫度通常設為在高溫氣流下操作,且沒有主機殼散熱設置。這導致功率轉換密度值相對較低,每立方英寸可能為10到20W。 POL實現資料中心電源高功率轉換 在資料中心中,功率分配系統體系架構會嚴重影響功率密度。最新趨勢是透過每個伺服器刀鋒上的負載點(POL)轉換器提供48V背板匯流排,將電壓降低至IC電平,通常低於1V。分開來看,POL可以具有令人吃驚的功率密度,每立方英寸超過1kW,但需要大量散熱片或冷卻氣流才能正常操作。48V匯流排可以來自機架AC-DC轉換器,其功率密度可能僅為每立方英寸20W左右。或者可以從外部中央電源提供380V DC,並在機架中轉換為48V。具備直流電源後,不再有交流整流和功率因數校正電路損耗,該轉換器可以達到非常高的效率,並且每立方英寸功率密度再次超過1kW(需要足夠冷卻能力)。另一個優勢是,與每個機架中的AC-DC不同,能量可以集中儲存並用於電源損耗或電力不足,而AC-DC具有很大的內部儲能電容器,占用了寶貴空間。 與工業製造中機櫃不同,資料中心負載實際是刀鋒伺服器本身,因此每個機架內部消耗功率均超過10kW。倘若要求嚴格控制的高速氣流進行主動冷卻,並保持較低入口溫度,這對於功率轉換器來說是個好消息,而由於其效率很高,僅消耗了刀鋒伺服器一部分的功率,允許使用具備最少量外部散熱(如果需要)的POL和匯流排轉換器,進而保持較高的總功率密度。實際上,使刀鋒伺服器產生的熱量遠離功率轉換器成為一個主要的考量因素。 寬能隙技術提高功率密度 功率轉換器設計人員可以透過降低開關速度來提高效率,但這會導致必須採用過大被動元件,進而使機殼尺寸變大。複雜諧振轉換器拓撲允許更高運作頻率,實現低損耗,而SiC和GaN半導體元件的到來又結合了高速度和低損耗,再次改變了遊戲規則。它們在較高溫度下可靠的操作能力可以使轉換器封裝尺寸進一步減小,進而實現更高功率密度。 追逐功率轉換效率百分點是一場收益越來越小的遊戲,除非這種改進能夠導致更小產品尺寸,進而能夠為直接增加利潤的裝置留出空間。功率密度是轉換器一個很好參數,但是應該仔細比較,並包括系統中所有元素,可以預期,製造產業中機櫃和資料中心伺服器機架之間的功率密度差異會很大。 (本文作者任職於貿澤電子)
0

極客橋照明無人機採用Vicor模組 實現小體積及輕量化

Vicor日前宣布,搭載Vicor DCM4623電源模組的極客橋GBI2020-Ⅰ型照明無人機已於夜間施工現場成功使用,並確保應急施工現場通宵照明。極客橋照明無人機飛行元件僅1.3公斤重,這對系統中各個環節的重量有著較為苛刻的要求,需要將電源模組重量控制在幾十克,而Vicor的電源模組滿足了該照明無人機特定需求。 極客橋GBI2020-Ⅰ型照明無人機可適應-30°C-60°環境溫度,抗7級風和10級大雨,3分鐘內完成部署,提供不間斷長時間照明。升空高度50米,單機模式能有效照亮約6000平方米,光通量10萬流明,可多機操作可無限疊加。 基於Vicor DCM4623體積小47.91mm×22.8mm×7.21mm,-55℃~125℃寬工作溫度,1244W/in3的功率密度,高達92%轉換效率的特性,使極客橋照明無人機能夠實現輕量化設計,將1.3公斤的機體元件搭載30克的電源模組。 該產品系列是一款隔離穩壓DC-DC轉換器,可在非穩壓寬範圍輸入,產生隔離輸出。憑藉其高頻零電壓開關(ZVS)拓撲結構,DCM轉換器為其各種輸入電壓範圍提供高效率。DCM模組轉換器可獨立使用,也可和下游負載點(PoL)產品一起使用,支援高效配電,為一系列非穩壓電源到負載點提供卓越的電源系統性能和連線性。DCM系列包括多種規格,支援±1%精度的穩壓調節。採用VIA封裝的DCM模組可利用整合的EMI濾波、精確的穩壓輸出和副邊地的控制介面提供更高級的功能。產品採用ChiP封裝技術,雙面散熱,提供了更為靈活的熱管理。
0

PDN追求靈活/高效/低成本 固定比例轉換電壓效能高

許多電源系統設計人員將穩壓的DC-DC轉換器視為整體設計的關鍵。但將合適的電壓提供給負載點穩壓器,不一定都需要穩壓的PDN,或者對於中繼配電母線電壓而言,PDN穩壓並不那麼重要。考慮這一點時,電源系統工程師應該考慮應用固定比率DC-DC轉換器,它可顯著地提升PDN的整體效能。 PDN效能與電壓轉換比例/系統負載息息相關 PDN效能通常以功耗、暫態響應、實體尺寸、重量及成本來衡量。影響PDN效能的一個主要設計挑戰是電壓轉換的比例和高準確度的線/負載調整率。工程師花了大量的時間來處理不同的輸入/輸出電壓轉換率,動態調整率以及分布特性,來提高效能和可靠性。 如果系統負載功耗處於千瓦級範圍內,採用高電壓設計大容量PDN,可減少在系統中的電流等級(P=V×I),因此可以縮小PDN尺寸,減輕重量並降低成本(纜線、母線排、主機板電源層銅箔)(PLOSS=I2R)。在轉換為低電壓/大電流前,最大限度延長高電壓傳輸距離,以盡可能縮短至負載距離是一大優勢。 但要讓高電壓、高功率PDN接近負載,則需要具有高效率及高功率密度的DC-DC轉換器。如果輸入至輸出電壓轉換比例很大,例如800V或400V轉48V,最高效率的轉換器是提供非穩壓的固定比率轉換器。這些高效率的轉換器,不僅可提供更高的功率密度,而且還因較低的功耗,可提供更便捷的熱管理。 固定比率轉換器設計實現彈性供電 固定比率轉換器的工作原理與變壓器類似,但它進行的不是AC-AC轉換,而是DC-DC轉換,輸出電壓為DC輸入電壓的固定比例。與變壓器一樣,這種轉換器不提供輸出電壓穩壓,輸入至輸出變壓由裝置的「匝數比」決定。該匝數比稱為K因子,表示為一個相對於其電壓降壓能力的分數。K因子從K=1到K=1/72不等,可根據PDN架構及PoL穩壓器設計規格進行選擇。 典型PDN電壓有低電壓(LV)、高電壓(HV)和超高電壓(UHV)(表1)。 固定比率轉換器可以是隔離式,也可以不是隔離式,而且可透過反向電壓轉換實現雙向功率轉換。例如,一款支援雙向功能的K=1/16固定比率轉換器可以作為一款K=16/1的升壓轉換器(圖1)。而額外的設計靈活性包括易於併聯(可滿足更高功率的電源要求)和串聯轉換器輸出的選項(可透過有效改變K因子,提供更高的輸出電壓)等(圖2、3)。 圖1 雙向固定比率轉換器的工作原理K=1/16的降壓轉換器,也可用作K=16/1的升壓轉換器 圖2 BCM轉換器易於並聯,滿足更高的電源需求 圖3 輸出串聯以提高輸出電壓的BCM可實現更高的設計靈活性 眾多終端市場及應用的電源需求急劇上升,因此供電網路正在經歷重大變革。由於新特性的增加以及效能等級的不斷提升,更高的PDN電壓(如48V)正在用於電動汽車、輕型混合動力車以及插電式混合動力汽車。48V符合許多系統要求的安全電氣低電壓(SELV)標準,而P=V×I和PLOSS=I2R的簡單電源方程式也說明了高電壓PDN效率更高的原因所在。 就一固定功率而言,與12V系統相比,48V系統電流為1/4、線路功耗為1/16。在1/4的電流下,纜線和連接器可以更小、更輕,而且成本也會更低。用於混合動力汽車的48V電池功率是12V電池的4倍,增加的電源可用於動力系統應用,以減少二氧化碳排放,提高燃油里程數並增加新的安全及娛樂特性。 在資料中心機架中增加人工智慧(AI),使機架電源需求提高到20kW以上,因此12V PDN在使用方面既笨重,效率又低。使用48V PDN,則可獲得與混合動力汽車相同的優勢。在汽車及資料中心應用中,最好保留原有12V負載及PoL常用降壓穩壓器,以最大限度減少需要修改的內容。 非隔離固定比率轉換器實現高效電壓轉換 48V符合SELV標準,因此非隔離固定比率轉換器是48V至12V DC-DC轉換級的選擇之一,因為目前的PoL 12V穩壓器能夠因應輸入電壓的變化。非隔離、非穩壓固定比率轉換器是最高效的高功率母線轉換器,可實現更低功耗、更高功率密度以及更低的成本。此一高密度有助於最新分散式配電架構用於混合動力汽車,其中非隔離固定比率轉換器可布置在負載旁邊,因此可在汽車周圍最大限度地運作更小、更高效的48V PDN。在刀峰伺服器中,這種小型非隔離式48V至12V固定比率轉換器可以布置在靠近降壓穩壓器的主機板上。 許多全新AI加速卡如NVIDIA的SXM以及開放式運算計畫(OCP)成員的OAM卡都設有48V輸入,因為AI處理器功率級在500至750W之間。要讓依然在其機架中使用12V PDN背板的雲端運算及伺服器公司使用這些高效能卡,就需要實現12V至48V的轉換。在這些加速卡上(或在更高功率的分散式12V至48V模組中)增加一款雙向K=1/4非隔離固定比率轉換器,作為12V至48V升壓轉換器(K=4/1),可輕鬆地將AI功能引進舊式機架系統。其中,如Vicor NBM2317可將48V高效轉換為12V,也可將12V高效轉換為48V,因為NBM是一款雙向轉換器。雙向性可將原有電路板整合在48V基礎架構中,也可將最新GPU整合在原有12V機架中(圖4、5)。 圖4 原有系統的48V電源 圖5 分散式48V架構將多個功耗更低的更小轉換器布置在接近12V負 載的位置 高電壓應用四大需求到位 電動汽車 在電動汽車應用中,電源需求決定了電池電壓必須遠遠高於目前混合動力汽車使用的48V,通常選擇400V。400V轉換為48V,配送給動力總成及底盤周圍的不同負載。為支援快速充電,400V電池由提供穩壓800V DC輸出的充電站透過800V至400V轉換器充電。 在400V/48V及800V/400V應用中,由於功率要求高,可有效使用具有高功率密度、效率在98%以上的隔離式K:1/8(400/48)及K:1/2(800/400)固定比率轉換器並聯陣列。穩壓可在固定比率轉換器級前面或者後面提供。未穩壓的功率密度及效率提升,不僅在這一極高功率應用中的這個位置效果顯著,而且還可簡化熱管理。 高效能運算 高效能運算(HPC)系統機架功率級通常高於100kW,因此使用380V DC作為主要PDN。在這些應用中,K:1/8與K:1/16的隔離式固定比率轉換器整合在伺服器刀鋒中或透過機架配電的卡上,為主機板提供48V或12V電源。隨後由12V多相降壓轉換器陣列或更高效率的先進48V至PoL架構提供穩壓。固定比率轉換器的密度和效率又一次在實現這類PDN架構中發揮重要作用,可實現高效能。 繫留無人機 另一項需要隔離的高電壓應用就是繫留無人機。繫留無人機的電源線長度可能會超過400公尺,無人機必須將其提起並保持,才能達到其飛行高度。使用800V等高電壓,可顯著縮減這些笨重電源線的尺寸、重量和成本,進而可實現效能更高的無人機(圖6)。使用板載固定比率轉換器(一般K=1/16)轉換至48V,可提供非常高效的極小供電解決方案,充分滿足機載電子產品及視訊有效負荷的需求。 圖6 電壓越高,電線就越輕,繫留無人機飛得就越高 5G通訊 現在,全世界都在提升4G無線電和天線塔為之前4G設備5倍的最新5G系統。4G PDN為48V,透過纜線從地面電源系統提供。新增5G設備,功率級顯著提升,如果PDN要保持在48V電壓下,那直徑就會非常大,電線就會很重。電信公司正在研究使用380VDCPDN的優勢,以顯著縮小纜線尺寸。在升壓模式下使用雙向K1/8固定比率轉換器,地面48V電源系統可向塔頂提供380V的電源(K:8/1)。4G和5G系統在塔頂使用380V至48V穩壓轉換器,不僅可獲得48V穩壓電源,而且還可透過380V細小電線實現更低成本的供電。 固定比率轉換器實現高效能PDN 高效能電源需求在不斷上升。企業及高效能運算先進系統、通訊與網路基礎設施、自駕車以及大量交通運輸應用,只是需要更多電源的高成長產業中的幾個市場。這些市場有一個共同的特點:每個都有極大的電力需求,可以從高功率密度的小型DC-DC轉換器解決方案中獲益,節省空間並減輕重量。電源系統工程師應當把固定比率轉換器作為實現更高效能PDN的重要高靈活解決方案,以在整體系統效能方面獲得競爭優勢。 (本文作者為Vicor全球銷售及市場行銷副總裁)
0

採用額外肖特基二極體 有效減少電壓干擾

在負載點(POL)降壓轉換器領域,同步變化的高側和低側主動開關已被廣泛使用。圖1顯示了具有理想切換開關的此類電路。與使用被動肖特基二極體作為低側開關的架構相比,此類切換開關穩壓器具有多項優勢。主要優勢是電壓轉換效率更高,因為相較於採用被動二極體的情況,低側開關承載電流時的壓降更低。 圖1 用於降壓轉換、採用理想開關的同步開關穩壓器。 確保同步降壓轉換器安全 兩開關時間內須保持斷開 但是,與非同步開關穩壓器相比,同步降壓轉換器會產生更大的干擾。如果圖1中的兩個理想開關同時導通,即使時間很短,也會發生從輸入電壓對地的短路。這會損壞切換開關,因此,必須確保兩個開關永遠不會同時導通。因此,出於安全考慮,須要在一定時間內保持兩個開關都斷開。 這個時間稱為開關穩壓器的死區時間。但是,從開關節點到輸出電壓連接了一個載流電感(L1)。通過電感的電流永遠不會發生瞬間變化。電流會連續增加和減少,但它永遠不會跳變。因此,在死區時間內會產生問題。所有電流路徑在開關節點側中斷。採用圖1所示的理想開關,在死區時間內會在開關節點處產生負無窮大的電壓。在實際開關中,電壓負值將變得越來越大,直到兩個開關中的一個被擊穿並允許電流通過。 使用MOSFET作為主動開關 有效控制節點電壓 大多數切換開關穩壓器使用N通道MOSFET作為主動開關。這些開關針對上述情況具有非常有優勢的特性。除了具有本身的開關功能外,MOSFET還具有所謂的體二極體。半導體的源極和漏極之間存在一個P-N結。在圖2中,插入了具有相應P-N結的MOSFET。由此,即使在死區時間內,開關節點的電壓也不會下降到負無窮大,而是通過低側MOSFET中的P-N結(如紅色所示)承載電流,直到死區時間結束並且低側MOSFET導通為止。 圖2 用於降壓轉換的同步開關穩壓器,採用 N通道 MOSFET和額外的肖特基二極體,可最大限度地減少干擾。 相應MOSFET中的體二極體有一個主要缺點。由於反向恢復現象,其開關速度非常低。在反向恢復時間內,電感(L1)導致開關節點處的電壓下降到比地電壓低幾伏。開關節點處這些陡峭的負電壓峰值會導致干擾,此干擾會被容性耦合到其他電路段。透過插入額外的肖特基二極體可以最大限度地減少這種干擾,如圖2所示。與低側MOSFET中的體二極體不同,它不會產生反向恢復時間,並且在死區時間開始時能非常快速地吸收電流。這可減緩開關節點處的電壓陡降。可減少由於耦合效應而產生並分佈到電路上的干擾。 肖特基二極體可以設計得非常精小,因為它僅在死區時間內短時間承載電流。因此,其溫升不會過高,可以放置在小尺寸、低成本的產品外殼中 (本文作者為ADI歐洲分公司電源管理技術專家)
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -