GaN HEMT
功率密度優勢顯著 GaN HEMT挺進大功率市場
相較於矽材料,以GaN材料實作功率元件,可以明顯拉高切換速度,從而讓電源設計者在電源設備中採用更小的電容、磁性元件,獲得提高功率密度,降低損耗的效益。然而,天底下很少有毫無缺點的選擇,作為功率應用領域的新興材料,GaN的可靠度與安全性,終究還是未經時間考驗,對於許多產品生命週期很長的大功率設備供應商,如生產伺服器電源、馬達驅動單元、電動車充電器的業者而言,要在產品中導入GaN元件,必須從長計議。
相較之下,消費性產品的生命週期短,市場對產品的可靠度要求不會像工業、汽車產業那麼嚴謹。只要成本結構對了,終端產品上市跟普及的速度很快。舉例來說,目前消費者已經可以在3C通路跟電商平台上購買到各種基於GaN HEMT的USB快速充電器,雖然價格仍比基於矽元件的同類產品略高,但其外觀小巧易於攜帶,輸出功率又有過之而無不及,對消費者來說仍是有吸引力的選擇。
這個現象也顯示,GaN功率元件的成本結構是相當有競爭力的。只要讓客戶建立信心,GaN功率元件在汽車、工業、資料中心等大功率應用領域,也有不小的發展空間。
熬過醞釀期 大功率應用逐漸浮現
GaN Systems台灣區業務總經理林志彥指出,雖然目前GaN HEMT元件最廣為人知,出貨量也最大的應用,是各種針對零售市場推出的快速充電器配件,或是筆記型電腦的電源供應器,但該公司過去幾年除了耕耘消費性電源應用市場外,其實也花了很多心力在非消費性產品上。舉例來說,資料中心所使用的各種高功率電源設備、電動車上的車載充電單元、工業類的馬達驅動設備、機器手臂等,也都有許多客戶正在設計導入,或是已經有產品量產上市。
事實上,非消費性產品導入GaN HEMT元件的時間點,並不晚於消費性產品。例如西門子(Siemens)的馬達驅控設備,就已經採用GaN Systems提供的方案,還有許多其他不方便透漏的設備客戶,也已經推出基於GaN HEMT元件的伺服器電源、逆變器(Inverter)等產品。還有些車廠客戶,也看上GaN在功率密度上的優勢,而決定與GaN Systems合作,共同發展22kW的車載充電器。
但工業或汽車領域的客戶,對元件的可靠度、安全性,要求都比消費性產品的製造商來得更嚴謹,因此其評估、測試與研發的週期,往往得花上兩到三年。以西門子的馬達驅控設備(圖1)為例,從元件性能/可靠性評估到產品設計、測試與量產,就花了近四年時間。但也因為前期作業紮實,因此從產品量產至今,業界對GaN元件最有疑慮的可靠度問題,至今完全沒有出現過。對GaN功率元件來說,這是一個相當重要的成功案例,有助於建立客戶對GaN元件的信心。
圖1 西門子已經在馬達驅動設備中導入GaN HEMT元件
另一方面,由於前期評估跟設計導入要花極大的心力,因此工業或汽車客戶只要導入某款元件,在終端產品漫長的生命週期中,都必須確保該款元件供應無虞,這使得客戶額外重視元件是否有第二供應來源。也因為這個緣故,GaN Systems與羅姆(ROHM)在2018年中結盟合作,讓兩家業者可以共同滿足客戶需求。
工業、汽車等非消費性產品需要較長的醞釀期。成本、供應鏈是否健全,乃至元件本身的技術特性,都是客戶在設計導入時需要考量的面向。但經過過去幾年的努力,已經有越來越多工業與資通訊電源設備開始採用GaN HEMT元件,電動車應用也已經有了初步成果。GaN功率元件應用開枝散葉,將是指日可待。
成本將是GaN最大優勢
包爾英特(Power Integrations, PI)行銷副總裁Doug Bailey(圖2)則表示,對於同時需要高效率跟小尺寸的電源設備來說,GaN元件所能創造的效益最為明顯。除了消費性的NB電源跟USB快充之外,伺服器跟電動車的電源系統,也是PI非常看好的應用市場。
圖2 包爾英特行銷副總裁Doug Bailey
事實上,GaN作為電源開關,其特性幾乎是全面性地勝過基於矽的傳統元件,只是目前跟矽開關相比,GaN開關的成本還略為高出一截。如果GaN跟矽的價差能持續縮小,可能絕大多數的電源應用都會考慮採用GaN開關。
那麼,GaN開關的成本,有沒有可能直逼矽開關呢?林志彥認為,這個可能性是存在的。事實上,目前GaN HEMT的市場行情,已經很貼近基於矽的MOSFET。如果是小量採購,GaN HEMT的報價約比MOSFET高出一成多,但若是百萬顆等級的大規模採購,跟MOSFET的報價應該是相去無幾。
至於跟另一種寬能隙材料--碳化矽(SiC)相比,GaN的成本優勢會更為明顯。SiC在散熱跟耐高壓方面,表現確實是優於GaN,但SiC的材料成本相當高昂,而且因為結構的關係,不容易微縮,這使得SiC元件不僅起始價格就比GaN高出一大截,降價的速度也不如GaN。
Bailey認為,由於GaN與SiC的成本落差相當明顯,許多高功率應用的開發者都對GaN展現出濃厚興趣。只要針對高功率應用研發的GaN HEMT開發成功,相信許多高功率應用的設計者,都會很快轉向GaN。事實上,高功率GaN HEMT的進展相當快,絕大多數電動車廠都已經拿到高功率GaN HEMT的工程樣本並展開評估,因此,GaN元件在電動車市場上,應該會有十分可觀的成長。
大功率應用更需高整合方案
在GaN元件積極搶攻高功率應用市場的同時,元件的設計將跟著出現哪些變化?林志彥認為,驅動器(Driver)與HEMT的整合,將是必然發生的趨勢。事實上,對消費性電源而言,GaN HEMT與驅動器是否一定要整合,還有討論空間,因為消費性電源的功率低,GaN HEMT的開關速度不須推到極限,以便在開關損失跟開關雜訊之間取得最好的平衡。此外,由於消費性電源的GaN HEMT開關頻率不必拉得很高,因此驅動器到開關之間的距離較長,仍是可以接受的。
舉例來說,對消費性電源來說,GaN...
採用直接驅動設計 GaN FET開關控制效率增
GaN損耗低 直接驅動優勢多
在設計開關電源時,主要品質因數(FOM)包括成本、尺寸和效率。將這三個FOM結合在一起,就需要綜合考慮多種因素。例如,提高開關效率雖然可以減少磁性元件的尺寸和成本,但也會增加磁性元件的損耗和電源裝置的開關損耗。由於GaN的截止電容較低且無二極管反向恢復,因此與MOSFET和IGBT相比,GaN HEMT有顯著降低損耗的能力。正常情況下,MOSFET/IGBT驅動器會提供合適的開啟和關閉電流以支持輸入電容。驅動器輸出和裝置閘極之間的外部電阻能控制開關速度,並抑制功率和閘極迴路振鈴。隨著GaN的開關速度增加,外部零組件會增加過多的寄生電感(Parasitic Inductance)來控制開關。藉由GaN裝置將驅動器整合到封裝中,可以大幅減少寄生電感,降低開關損耗,並最佳化驅動控制。
GaN中的本體二維電子氣(2-DEG)層可以在源極和汲極之間使裝置在零閘-源電壓下導通。為安全起見,當偏壓功率不可用時,必須關閉開關電源供應器使用的功率裝置後才能斷開輸入和輸出的連接。為了模擬增強型裝置,將低壓MOSFET與GaN源串聯。圖1顯示了實現這一點的兩種不同配置:串接和直接驅動。
圖1 串接和直接驅動配置方式
接下來將比較功耗,並描述與每種方法相關的注意事項。在串接配置中,GaN閘極接地,並驅動MOSFET閘極以控制GaN裝置。由於MOSFET是矽元件,許多閘極驅動器都可輕鬆獲得。然而,由於GaN閘-源極電容(CgS)和MOSFET Coss必須在GaN裝置關閉前充電達到GaN臨界值電壓,因此這種配置顯示出更高的組合Coss。
在直接驅動配置中,MOSFET是打開的,且由接地電壓和負電壓(VNEG)之間的閘極驅動器驅動的GaN閘極打開/關閉組合裝置。此外,MOSFET Coss不需要充電。關閉GaN Cgs的電流來自於較低的偏壓電源。較低的供應電壓可提供相同的GaN閘-源極電荷(Qgs),以降低功耗。在開關頻率較高的情況下,這些功率差異會大幅增加。反向恢復Qrr損耗在串接配置中發揮作用。這是因為在第三象限傳導中,MOSFET呈關閉狀態,並通過內接二極體傳導。由於負載電流反向流動,MOSFET中出現儲存電荷。克服反向恢復電荷的電流來自高壓電源,會導致大量損耗。
然而,在直接驅動配置中,MOSFET始終處於開啟狀態,而其寄生二極體因為較低的RDSon而不開通;因此,在直接驅動配置中不存在與Qrr相關的功率損耗。
在串接配置中,關閉模式下GaN和MOSFET之間的電壓分布會使得MOSFET因高GaN汲-源極電容(Cds)而突崩。
一種解決方案是在MOSFET的汲極和源極並聯的情況下增加一個電容器。然而,這種方法只適用於柔性開關應用,在硬性開關應用中會產生高功耗。
由於GaN閘極與MOSFET的源級相連,因此無法控制串聯驅動中的開關速度。在硬性開關操作中,GaN Cgs、MOSFET Coss和MOSFET Qrr中有效Coss的增加,以及可能因防止MOSFET突崩所產生的電流傳導,會在初始充電期間產生更高的汲極電流。這種更高的汲極電流會導致串接驅動中的功耗更高。
MOSFET的汲極電荷足以關閉GaN裝置之後,汲極中Coss的驟降,加上流過功率迴路電感的汲極電流較高,導致串接配置中的開關節點產生過大的振鈴。圖2為硬性開關事件中的開關波形,在此模擬中,直接驅動配置在每次硬性開關事件中消耗的能量更少,即使其開關速度較低,振鈴也較小(直接驅動50V/ns時為4.2W,相較串接驅動150V/ns時為4.6W,均帶5A負載電流)。
圖2 硬性開關操作導致振鈴過大。
另一方面,直接驅動配置在開關操作過程當中可直接驅動GaN裝置的閘極。當不存在偏壓電源的時候,MOSFET閘極會被拉至接地,並且以與串接配置相同的方式來關閉GaN裝置。
只要存在偏壓電源,MOSFET會保持開啟狀態,且寄生電容和內接二極體會從電路中移除。直接驅動GaN閘極的優勢在於可以藉由設定對GaN閘極充電的電流來控制開關速度。對於升壓轉換器,驅動器電路的簡單模型如圖3所示。可以從這個模型中推導出方程式。
圖3 直接驅動配置的驅動路徑模型
公式1證明當GaN裝置具有足夠的閘-汲極間電容(Cgd)時,利用閘極電流,可透過米勒反饋(Miller Feedback)來控制開關事件的速度。對於Cgd較低的裝置來說,此種反饋將流失,且裝置的跨導(gm)控制著開關速度。
公式1
直接驅動配置的另一個優勢在於可以給閘極迴圈增加阻抗來抑制其寄生共振。抑制閘極迴圈也可以減小功率迴圈中的振鈴,使得GaN裝置上的電壓應力降低,減少硬式開關期間的電磁干擾(EMI)問題。
圖2的模擬顯示了以功率和閘極迴圈寄生電感為模型的降壓變換器中開關節點振鈴的差異。直接驅動配置有一個過衝量非常小的受控開關。然而,由於閘極迴圈中的初始COS、Qrr較高與較低的阻抗,串接驅動的振鈴和硬式開關損耗明顯更高。
整合閘極驅動器 GaN FET開關控制更順暢
以德州儀器(TI)旗下的LMG341X系列600V GaN裝置為例,該產品為首款整合GaN FET plus驅動器和保護特性的產品,並且是8mm×8mm的方形扁平無針腳(QFN)封裝多晶片模組(MCM),包含一個GaN FET和一個使用整合20V串聯FET的驅動器,總RDSon為75mΩ。
圖4為此裝置的方塊圖。閘極驅動器提供了GaN FET直接驅動能力,並具有一個內建的降壓/升壓轉換器來產生關閉GaN FET時所需的負電壓。閘極驅動器採用單一12V電源供電,並擁有一個內部低壓差穩壓器(LDO),可以用來生成為驅動器和其他控制電路供電的5V電源軌。內部欠壓鎖定(UVLO)電路保持安全FET關閉,直到輸入電壓高於9.5V。UVLO超過自身的臨界值時,降/升壓轉換器即打開並為負電源軌(VNEG)充電。一旦VNEG電源電壓超過其自身的UVLO,驅動器就會啟用。
圖4 單通道600V、76-ΩGaN FET電源極的方塊圖
與分離式GaN和驅動器相比,LMG341x系列的整合直接驅動裝置具有很多優勢。閘極驅動器的一大重要作用是在硬式開關事件期間對開關速度的控制。
另外該產品使用可程式化電流源來驅動GaN閘極。電流源提供阻抗來抑制閘極迴圈,並允許用戶以控制的方式將開關速度從30V/ns編程至100V/ns,以解決電路板寄生和電磁干擾問題。
藉由將串聯FET整合到驅動器的積體電路(IC)中,敏感FET和電流感測電路為GaN FET提供過電流保護。這一關鍵特性可以提升系統整體可靠性。這種電流感測方案在使用強化模式GaN裝置時是不適用的。當流過GaN FET的電流超過40A時,電流保護電路會跳脫。過電流事件發生後的60ns內,GaN FET會關閉,以防止晶片過熱。
藉由將驅動器晶片包裝在與GaN FET相同的晶片連接焊盤(DAP)上,驅動器晶片上的引線框架可以感測到GaN裝置的溫度。驅動器在過熱時可以透過停止GaN驅動來保護裝置。整合的GaN裝置也可以提供故障輸出,以通知控制器開關因為出現故障而停止。為了使用直接驅動方法來驗證操作,我們創建了一塊半橋式板,並將其配置為降壓轉換器;並使用ISO7831雙向位準偏移器來饋送高側驅動訊號,並恢復位準偏移故障訊號。
在圖5中,GaN半橋式配置從480V匯流排以1.5A的電壓以及100V/ns的開關速度切換。①表示開關節點波形,②表示感應器電流。硬式開關導通狀況較好,並有~50V過衝電壓。該波形使用1GHz示波器和探針測得,用來觀察是否存在任何高頻振鈴。快速地接通,加上截止電容的減少以及缺少反向恢復電荷,使得基於GaN的半橋式配置能夠高效地切換,甚至作為硬式開關轉換器。
圖5 降壓開關波形示例
總結來說,GaN在減少截止電容和無反向恢復方面提供的優勢開闢了在使用硬式開關拓撲結構的同時能保持高效率的可能。若要最大限度地發揮GaN帶來的優勢,則需要控制高開關速度,也因此需要一個最佳的組合封裝驅動器和精細的電路板布線技術。組合封裝驅動器有助於減少閘極迴圈寄生,以減小閘極振鈴。有了精細布線的印刷電路板(PCB),最佳化的驅動器就可以讓設計人員控制開關事件的速度,並將振鈴和電磁干擾降到最低。這一效果是通過GaN裝置的直接驅動配置實現的,而非串接配置。
而LMG341x系列元件能夠讓設計人員以30V/ns到100V/ns的開關速度控制各種裝置的開關。此外,驅動器可以提供過電流、過熱和欠壓防護。
(本文作者皆任職於德州儀器)
Si/SiC/GaN各擅勝場 功率開關元件選用要仔細
Si/SiC/GaN材料特性比較
目前,市場上絕大部分的功率元件從20V到數kV都是以矽的技術為基礎,當矽的技術到達其極限,材料性質就會限制住功率半導體元件的效率提升空間,金氧半場效電晶體(MOSFET)是最常見的功率半導體元件,其導通電阻受限於崩潰電壓,也就是磊晶層的特性,導通電阻的公式如公式1:
公式1
簡化之後,就是「矽的極限」關係式
...
劍指GaN市場 英飛凌CoolGaN新品來勢洶洶
氮化鎵(GaN)近年於電源應用領域大行其道,商機也因而快速成長。而為穩固電源晶片市占龍頭寶座,並搶攻GaN市場版圖,電源晶片供應商英飛凌(Infineon)也趁勢推出新一代GaN解決方案「CoolGaN 600 V增強型HEMT和EiceDRIVER驅動IC」,期能為伺服器、電信、無線充電或適配器(Adapters)等電源產品提供更高的電源效率與功率密度,並減少體積與設計成本。
根據市調機構Yole Développemen研究顯示,2016年氮化鎵(GaN)功率元件產業規模約為1,200萬美元,而到了2022年,該市場將成長到4.6億美元,年複合成長率高達79%。
對此,英飛凌電源及多元電子事業處資深產品行銷經理鄧巍表示,GaN市場成長十分強勢,其市場產值從千萬美元不停攀升,甚至十年後可能達到10億美元的產值;而主要驅動力來自於電源和汽車產業。
因應電源產業對GaN需求明顯增加,英飛凌也於近期宣布推出CoolGaN 600 V增強型HEMT和EiceDRIVER驅動IC。新款增強型HEMT採用可靠的常閉概念,實現快速開通和關斷,並可在開關式電源(SMPS)中達到高能源效率和高功率密度;且具更低的柵極電荷及反向導通狀態下的優異動態性能,進而大幅提高工作頻率。
鄧巍說明,GaN元件其中一項設計挑戰在於,如何將其從Normally ON設計成Normally OFF,以滿足安全考量。對此,英飛凌運用了獨特的常閉(normOFF)概念,採用P-GaN技術,把源極和漏極的電子層變薄,使其容易箝斷,因而能讓GaN元件實現Normally OFF的特性。
另一方面,為了使電源產品設計業者更能發揮GaN的特性,英飛凌也推出EiceDRIVER驅動IC,該系列產品專為CoolGaN量身定制,可提供負輸出電壓,以快速關斷GaN開關。在開關應處於關閉狀態的整個持續時間內,EiceDRIVER IC可以使閘極電壓穩定保持為零,以保護GaN開關不受雜訊影響導致誤導通;且可實現恒定的GaN HEMT開關轉換速率,幾乎不受工作迴圈或開關速度影響,確保運作穩健性和高效能,大幅縮短研發週期。
鄧巍指出,即便有了高效能的GaN元件,但沒有具備好的驅動IC的話,同樣無法體現GaN的優勢。也因此,EiceDRIVER驅動IC可說是專為確保CoolGaN開關實現強固且高效的運作所設計,協助電源產品設計商進行電路、死區和損耗控制等,以減少工程師研發工作量,加快產品上市時程。