- Advertisement -
首頁 標籤 EV

EV

- Advertisment -

是德攜手DEKRA推車用互通式充電解決方案

是德科技(Keysight)日前宣布DEKRA選擇使用是德科技Scienlab充電檢測系統(CDS)解決方案,對電動車(EV)或電動車供電設備(EVSE)採用的充電技術,進行廣泛的測試及驗證。 DEKRA企業產品安全測試副總裁Beat Kreuter表示,與是德科技密切合作,以便為汽車業提供最合適的解決方案,讓汽車與能源網能完全互通。是德科技解決方案讓DEKRA能夠透過高度自動化測試技術,提高道路駕駛安全性。 在2019年至2030年間,EV市場預計將以21%以上的年複合成長率大幅成長。DEKRA是全球測試、檢驗和認證廠商,該公司將使用是德科技Scienlab充電檢測技術,全面部署支援多元充電介面、電網和國際標準的EV充電解決方案。 汽車產業正密切關注電動車和電動車供電設備,在整個生命週期中使用再生能源所可能帶來的影響。近來,各國政府無不藉由提供獎勵措施並制定相關法規,來鼓勵企業和消費者投資於電動車,以達到減少空污和噪音的目的。是德科技備有完整的設計、測試和驗證解決方案,為汽車、能源和通訊產業的轉型,提供強力的後盾。 2019年,是德科技加入了由汽車生態系統產業專家發起的充電介面計畫(CharIN),以協助建立電動車充電技術的全球標準。此通用標準可保證電動車和充電站之間的互通性。是德科技CDS解決方案採用模組化設計,方便使用者驗證任何EV與EVSE之間,以及任何充電網元件之間的充電互通性。
0

精度/穩定/壽命兼顧 電動車首重電池管理與壽命

目前電池市場的推動力不只是成本,還有對續航里程更長的車輛、更短的充電時間、以及更高功能安全的需求。為了滿足這些嚴格的電池管理系統要求,必須遵守最高標準並將偏差降至最低。 由於電動車輛40%的價格取決於電池,因此性能和電池壽命已成為EV品牌取得成功的主要因素。電池管理系統(BMS)供應商,與客戶合作,尋找最佳關鍵流程來監控和管理電動車輛電池,並確保其安全性、生產力和使用壽命。 維持BMS運作為關鍵目標 BMS能夠密切監視、控制和分配整個電池系統在使用壽命期間的充電和放電。精準監控電流和電壓分布至關重要,因為電池過度充電可能會引起火災或爆炸,而充電不足(或完全放電)則會導致電池失效。電池管理系統的品質直接影響EV每次充電所能行駛的里程數。而優質的電池管理系統能夠大幅延長電池的整體使用壽命,進而降低總體擁有成本。 在這種情況下,價格水準變得不那麼重要,而長期價值則成為關鍵指標。這是因為使用者力求在電池的整個使用壽命內獲得更好的性能。「談到精度,以及車輛整個使用壽命內的精度,不會有任何取捨。」如ADI BMS總經理Mike Kultgen便表示:「精度越高,就越能更良好地瞭解電池的狀態,從中獲取的容量就越多,電池組的運作也就越可靠。」思考電池組的投資,可將BMS的性能考慮在內,而隨著汽車設計者顧慮保固和電池組的生命週期成本,電池組性能的重要性也就更加明顯。 電池管理需全天候監控 電池研發單位對設計團隊提出了極高的要求,因為他們需要考慮一系列的優先事項,包括價格、可靠性和安全性。在處理提供48V到800V電壓的EV系統時,不能冒任何風險。 為了在駕駛員踩下踏板的瞬間提供超過100千瓦的電能,電池系統必須在數百伏特的電壓下才能高效工作。然而,鋰電池只能提供幾伏特的電壓。為了獲得足夠的功率,需要將大量電池串聯在一起形成很長的電池堆疊。通常電動車可能使用100個獨立的電池,在電池堆疊的頂部提供350伏特的電壓。但這帶來了一些挑戰。 在長長的電池堆疊中,如果有一個電池失效,實際上相當於所有的電池都失效了。因此需要監控和管理所有電池,為電池充電、放電,且在車輛生命週期的每一天都要如此。鋰電池不能在極限充放電情況下工作,而必須保持在非常特定的範圍內,例如15%到85%,否則電池性能就會下降。 BMS確保電源狀態穩定 在電源的監控與管理方面,其中ADI的BMS可從電池組生產到報廢的整個週期中,提供精確的電池測量資訊。電子設備直接連接到電池堆疊中的每個電池,報告與電池電流對應的電壓和溫度。系統可提供充電狀態和健康狀態。每個電池的電流和溫度必須透過中央處理器的複雜演算法進行監控。ADI內建通訊介面,同時支援模組化設計(架構),並且完全可彈性擴展,適用於不同的客戶群體。 ADI BMS總經理Mike Kultgen表示:「BMS對電池進行持續監控,能夠隨時在各種溫度和工作條件下提供可靠的測量精度。系統知道每時每刻的狀況,並且高度依賴從ADI晶片接收到的資訊。」 BMS精度/可靠/穩定創造品牌可信價值 與電池管理系統專家如ADI密切合作,可以接觸到種類多樣的元件和產品。他們為OEM廠商提供人們的系統級專業知識、深厚的領域知識以及多年的BMS實際設計經驗。原始設備製造商則可以提高每次充電行駛里程效率、延長電池使用壽命、確保安全性,並提高品牌信任度。 ADI AUTG副總裁Patrick Morgan表示:「客戶告訴我們,使用產品時需要信任產品,因此我們在他們的場地或我們的工廠舉辦技術高峰會,並邀請關鍵設計人員和應用工程師與他們的團隊交流,花一兩天的時間介紹發展規畫,客戶需要解決的問題,然後討論如何解決他們的特定問題。透過一連串的專注合作來建立信任。」 ADI應用經理Cuyler Latorraca亦補充:「曾有總部設在亞洲的客戶要求根據舊電池管理系統設計新的電池管理系統。研究了他們的想法、系統要求和操作環境之後發現,他們的接地方案導致系統測量存在誤差,這是業界常見的問題,最後我們採取措施消除該誤差。」 電池趨勢朝增加蓄電/減少重量與成本方向研發 ADI一個積體電路中有3至18顆電池,支援的電池數量具競爭優勢。ADI BMS市場經理Greg Zimmer表示:「高壓電池系統技術日新月異,廠商在增加容量、延長使用壽命方面承受著很大壓力。業界將如何實現這一目標?在打造能夠持續使用10年的電池的同時,如何從電池組中獲取更多電能、增加其續航里程、支援更快的充電,並開發集中式和模組化的設計?」 ADI與原始設備製造商合作,透過架構創新來改進功率密度、精度和重量等挑戰,而ADI第5代BMS可望在明年投入車輛生產。 BMS須滿足EV市場需求 電池管理系統須滿足EV市場對安全、高品質、高性能電池日益成長的需求,例如ADI即憑藉以下系統級經驗,以及多樣化的元件產品,提供多元選擇。 ・高精度和穩定性。 ・透過單一元件和簡化設計全面支援ASIL D。 ・高速、EMI可靠、電氣隔離、具有備援的低成本菊鍊,可因應故障情況。 ・產品安裝基礎雄厚,已有四代產品投入現場使用。 ・透過一系列BMS產品提供系統級解決方案。 在生產大量電池組的同時,也會產生大量可供回收利用的廢舊電池組。只要電池在整個生命週期中管理得當,則耗損並不意味著報廢。在考慮總體擁有成本時,必須將儲能裝置再用於車輛以外的其他用途(也稱為第二生命)考慮在內。 (本文作者為ADI BMS總經理)
0

六大感測器成就動力系統 汽車電氣化步步到位

動力系統感測架構剖析 如圖1所示,動力系統中高度準確的電子感測器會負責監控相關條件以提升效率,系統中包含數個模組,各模組彼此獨立運作,並分別具備不同感測器和反饋控制機制。車輛效率主要視動力系統感測器和傳動器的精確度、精確度和反應時間而定。這些感測器可幫助傳輸感測資訊所需的封閉迴路運作,以進行引擎管理和變速箱控制(如表1所述)。 圖1 HEV中的動力系統 表1 動力系統剖析:與建構單元的關係及如何實現頂尖設計目標 促進動力系統發展的主要因素為經濟效益與廢氣排放,兩者都會影響性能與行駛能力。在引擎和變速箱系統中,感測器與反饋控制機制透過監控激發來提高效率,並利用燃燒程序效率提升以減少廢氣排放;且感測器和反饋控制機制透過準確監控激發來提高效率,進而促進引擎和變速箱系統效率。為了增加電動車和油電混合動力車中的電氣化程度,工程師必須針對動力系統架構和控制裝置重新構思。 此外,動力系統感測器在ICE車輛中扮演的角色也同等重要。如圖2所示,車輛電氣化最初從智慧型感測器開始。而減少ICE車輛廢氣排放的主要方式,是運用動力系統感測器與其性能。 圖2 傳統內燃機引擎 動力系統感測器可依提供的測量功能進行分類,如圖3所示。動力系統感測器通常可提供以下特性: .低功耗(~10mA)。 .高準確性,亦代表提供精確的控制機制。 .對激發改變具高靈敏度。 .在汽車環境中強固耐用。 .電磁干擾(EMI)電磁干擾相容性。 圖3 依測量基礎分類動力系統感測器 舉例而言,德州儀器(TI)汽車高溫感測器(HTS)參考設計可提供高密度、低成本、高準確的熱電偶類比前端。 三種溫度感測器成就動力系統 動力系統共有三種主要溫度感測器類型。 熱電偶溫度 隨著新型柴油引擎問世,對高溫感測器的需求也越來越高,因為排氣系統就在引擎正下方。這種配置需要具備高精確度、高解析度和高整合度的溫度偵測功能,而可承受和偵測高溫的排氣系統溫度感測器通常運用熱電偶,並以多個熱電偶溫度感測器和一個獨立模組來進行控制。 熱敏電阻 市面上新熱敏電阻提供高溫度範圍,以滿足高溫感測器的需求。以矽基線性熱敏電阻取代標準負溫度係數和正溫度係數類型,也是目前的趨勢。透過新式智慧型熱敏電阻,汽車動力系統的特定需求便得以滿足,可在廣泛的動態範圍中實現高線性。 矽晶 由於具備以下優點,矽晶溫度感測器在HEV/EV和ICE車輛中扮演著關鍵角色: .於廣泛的溫度範圍中提供高線性。 .可在支援溫度範圍內維持精確度。 .提供溫度感測器高解析度和第0級認證。 .提供數位輸出介面,促進資料數位傳輸。 .提供觸發警示功能,大幅提升控制作業效率。 .成本低廉且執行簡單。 壓力感測器多線束防短路 整合式動力系統壓力感測器運用電容與電阻原理,搭配放大器、類比至數位轉換器、微控制器和數位至類比轉換器/數位介面,在一個晶片上進行訊號調整。一般來說,壓力感測元件在溫度方面多呈非線性,因此傳統壓力感測器訊號調整電路中包含溫度與線性補償機制;由於壓力感測器模組線路需要多個線束,因此最好能防止線束發生過電流、過電壓或短路等故障。 舉例而言,汽車電阻橋壓力感測器參考設計和汽車電容式壓力感測器參考設計可助使用者避免線束故障。 動力系統壓力感測器的基本考量包含: .訊號調整元件需具備較高的絕對最大額定值。 .容許線束故障。 .高靈敏、壓電電阻壓力感測器需求增加。 在汽車應用中,動力系統壓力感測器的訊號調整必須讓感測器能在極惡劣環境中運作,並且能承受各種震動、溫度波動、各種電磁條件和撞擊。 液位與濃度感測器以超音波維持系統運作 動力系統液位與濃度感測器通常以超音波電容運作基礎。液位必須在車內數個位置進行測量,如水箱、油箱、液壓油箱、機油箱與尿素箱等,皆位於車輛動力傳輸系統內。 為了讓控制迴路運作更有效率,必須監控這些液體的液位與濃度。以超音波法進行液體感測有以下優點: .縮短量測時間。 .可在廣泛偵測範圍內驅動各種轉換器。 .適合各種中型儲槽和中等距離。 .可與高電壓電路介接,進而驅動轉換器以進入更深的儲槽中。 .能夠整合各種保護級。 .可使用控制器區域網路(CAN)介面。 在排氣系統中,AdBlue噴射會在柴油微粒過濾器(DFP)之後執行,以減少廢氣中的氨氣濃度;液體濃度與液位感測器在液體濃度與adblue液位量測中扮演重要角色。 磁性/電感奠定位置感測器運作基礎 位置感測器是另一種運用在ICE、HEV和EV動力系統中的感測器,可在電動轉向、牽引反相器、自動變速和防鎖死煞車系統等重要操作下,測量轉速、角度、速度和開啟/關閉位置。 供應商如TI的液位、濃度與流動感測超音波感測類比前端,以及汽車超音波訊號處理器和轉換器驅動器,皆支援這些超音波參數。 位置感測器主要以磁性(霍爾式和磁電阻)與電感為運作基礎,依應用而有所不同(表2)。動力系統位置感測器的考量與需求包含: .在重要位置提供耐用性。 .具備偵測較小變化的靈敏度。 .提供高頻寬以進行速度感測。 .整合式數位輸出。 .輸入處低雜訊。 .陣列感測器或其他靈敏度軸。 .可耐受溫度與震動。 .非線性磁鐵。 .能夠實現高頻寬位置感測。 表2 位置感測器類型(依使用原理分類) 電感式位置感測器可透過減少維修來提升耐用性與精確度。 RF排氣感測器提升精確度 所有ICE車(包括油電混合車)皆採用排氣感測器。為了因應廢氣排放新規定,越來越多國家/地區皆針對廢氣排放訂立規範,對排氣感測器的相關要求亦隨之增加。 如圖4所示,車輛排氣系統中有各種類型的感測器。過去的感測器採用化學方式,利用兩個電極和電極電位基礎來進行感測,這種化學式感測器需要較多維護成本和反應時間。 圖4 汽車排氣系統內的感測器類型 而新型射頻(RF)排氣感測器可縮短反應時間、降低維護成本並提升精確度;這類感測器的運作基礎是各種氣體都有其發生共振的吸收頻率,並由一個傳送天線和一個接收天線負責感測氣體。若想降低廢氣排放,TI的汽車RF煤灰感測器參考設計中有針對RF感測器在各種汽車排氣系統上的氣體偵測功能加以說明。 排氣感測需具備以下條件: .符合第0級資格的產品。 .由於每個排氣感測器都具備不同模組,因此需透過CAN協定與主要電子控制單元通訊。 .高精確度。 .降低維護成本。 .高溫下的耐用性與耐受性。由於排氣感測系統位於引擎蓋下方,因此排氣感測器溫度範圍將近可達1,500°C。 電流感測器三子系統重要需求 不論是燃油引擎、HEV還是EV,電流感測器都是車輛動力系統中最重要的一環。磁性分流基礎可滿足車輛電流感測的需求,使用者可依感測器位置來選擇適當運作基礎。燃油車輛中的電流感測主要為12V,HEV/EV車輛則為48V,其中EV的範圍可從400V到600或800V。 以下是電流感測各子系統的重要需求: ICE ICE的電流感測適用12V電池,其中精確度和高度整合是主要影響因素。這種電流感測器必須能在高溫下提供精確度;溫度和補償演算法可在廣泛溫度範圍內維持精確度,以避免獨立式電流感測器發生線數故障。 HEV HEV中的電流感測器適用於12V和48V電池、DC/DC轉換器和馬達控制。毫安培至千安培範圍內的電流感測對電池來說尤其重要,必須以共模電壓電流分流感測器來耐受48V電池;電池電流感測必須能在低電流下提供高準確性,才能進行電池充電狀態(State of Charge, SoC)和健康狀態(State of Health, SoH)計算;DC-DC轉換器電流感測需要更高頻寬,才能針對故障快速進行反應;馬達控制電流感測需高電壓轉換率和低反應時間。 EV EV的車載充電器、DC/DC轉換器、牽引馬達和400V至800V高電壓電池都需要進行電流感測。此外,也需隔離電流感測,以進行高電壓處理。分流式電阻器可提供磁性或強化型隔離、高頻率隔離和高線性。 電阻器低功率消耗和隔離式放大器電流感測的設計廣受歡迎,其中EV高電壓電池的低側電流感測結果較為理想,必須透過低電流下的準確度、高整合度及廣泛動態範圍電流感測,來進行電池充電狀態和健康狀態計算。 在精確感測非常重要的情況下,供應商如TI的汽車分流式±500A精確電流感測參考設計可在-40°C至+125°C溫度範圍內,為電池管理系統、馬達電流與其他汽車應用提供<0.2%的全幅範圍。 至於其他用途,電磁閥和其他數個閥門也需要電流感測才能在整個溫度範圍內得到準確結果,因此必須減少溫度漂移和偏移,並須降低分流容忍度。在這種情況下,較理想的方式是採用整合式分流。 感測器設計推動車輛電氣化進程 針對EV與HEV中的高容量電池,如TI的汽車、mA至kA範圍、電流分流感測器參考設計亦說明如何利用匯流排式分流電阻器,偵測來自毫安培至千安培範圍的電流。 隨著新汽車技術的推出和車輛持續電氣化,也對動力系統感測器與相關電子元件帶來許多影響。在HEV和EV中,電流和位置感測器的設計需求出現大幅提升(表3);而具高度準確性的訊號調節器和高精確度的運算放大器,是讓動力系統感測器在嚴峻汽車環境下可靠運作的主要功臣;感測器訊號調節電子元件可幫助克服許多挑戰,如高溫和震動條件、EMI保護,以及汽車安全標準相符性等。 表3 HEV/EV各類感測器及相關配置 在最終分析中,可看到動力系統感測器已準備好面對本時代最大的顛覆性創新科技之一:車輛電氣化。但選擇動力系統感測器和相關訊號調節電子元件時,應仔細回顧基本的設計考量。 (本文作者為德州儀器汽車系統工程師)
0

意法新EV能源管理晶片提高車輛續航里程暨安全性

意法半導體(ST)日前推出能夠提升電動汽車(Electric Vehicle, EV)可靠性、安全性、續航里程及成本效益的新電池管理技術。 意法半導體汽車和離散元件產品部副總裁暨智慧功率解決方案MACRO部門總經理Alberto Poma表示,該公司正在擴充電子技術專業知識的應用範圍,全力協助車商研發更環保的交通工具。以該公司與重要合作夥伴在電動汽車電池管理技術領域多年的合作經驗,新電池管理晶片將進一步提升電動汽車能源管理系統的各項性能,直接提升重要的終端使用者體驗,增加市場吸引力和消費者信心。 電動汽車製造成本預計在2030年前與傳統內燃機汽車相當,到2038年銷量將會超越傳統汽車 。意法半導體透過自身的技術優勢為汽車製造商達到這些目標,推出了一款先進且具有業界最高電壓檢測精度的電池管理系統(Battery-Management System, BMS)控制器,延長電動汽車的行駛里程和電池壽命。該控制器還增加溫度監控輸入,以加強電池的安全性。 L9963控制器是意法半導體BMS電池管理系統計畫的最新研發成果。該計畫已經為意法半導體與EV電池開發企業合作專案開發的半導體晶片,其中包括自2008年開始而目前還在進行的LG Chem合作專案,以及2017年宣布與中國科學院微電子所和電動汽車電池科技公司中科芯時代的合作專案。
0

三合一電源架構實現高效充電 太陽能電動車前景可期

在印度標準局(BIS)、印度汽車研究協會(ARAI)、能源效率服務有限公司(EESL)等組織的協助下;印度政府已公布充電站的技術規格,此外AC-001、DC-001等原始標準也已經完成開發,並在特定地點部署充電站;除了低功耗AC和DC-001之外,最新規範也要求充電站必須配備多種規格的充電器,也就是AC Type 2、CCS和CHADEMO。不過這些系統完全仰賴電網供電,會因主要都會和半都會地區建物的供給而受限,而且電網是否準備充分足以應付這些額外負擔,也都還是問題。 而這就是太陽能與儲存裝置可以切入的領域,不但可補足電網不足,還能在全國各處可行地點獨立作業。所幸印度已成功部署太陽能,且因地理條件,太陽能資源十分充足。一次性的安裝與資本支出可順利運轉至少20到25年,投入的資金只需短短幾年即可回收,之後的能源輸入便都形同免費。 接下來將介紹一套可行的實作方法,來運用、儲存太陽能並將其應用於電動車的充電;本文還會略為提到能源的運用和儲存方法、分散式電池管理、能源轉換與連結,都是模組化、可擴充之太陽能驅動電動車充電站的基本要素。 圖1為常見由太陽能驅動之電動車充電站實作的配置圖,主要元素均可一目了然。 圖1 太陽能電動車充電站的功能方塊 至於使用者的部分,基本上為終端使用者會用到的功能。資訊的交換和使用者互動都是在這裡進行,通常包含一個具備觸控感測功能的TFT螢幕、供驗證或支付用的NFC讀卡機,有時或許還有藍牙介面以提供更先進的功能;車輛可實體連接任何一種輸出埠─供小型車和電動三輪車使用的AC慢充、特定等級車輛的AC快充,以及DC快充。使用者必須驗證自己的身分、設定偏好的充電方式,並且等到充電完畢。不過越深入其後的功能越複雜,因為都由中央控制器所控制和監控,所以會牽涉到許多不同的模組。 三供電來源共構能源管理系統 這套系統有三種供電來源。首先最重要的就是太陽能板,規模分析並不在本文討論範疇內,但一般來說每小時最少要有數千瓦(Kilowatt)。太陽能板的額定輻照度通常在每平方公尺150W。太陽能板饋給的對象為最大功率點追蹤(MPPT)模組,這是一種直流對直流(DC-DC)的功率轉換器,內部可執行最大功率點追蹤運算法。一般來說這些裝置效率都非常高,電效率超過98%,其通常是多相的交錯式降壓或降升壓轉換器,輸入和輸出端都只要幾百瓦就能運轉。裝置可以隔離也可以不要,但因為法規或安全因素,大部分系統都會進行電氣隔離。它的輸出對象則是一個通用的直流匯流排,可從這裡將下游能源提供給負載,而系統可採類比、完全數位化,或混合類比與數位控制。 第二種來源是電網,其並非必要供電來源,因為目的是使太陽能的利用最大化。不過在供電斷斷續續,或日照不足以提供全年或特定季節運轉的地區,電網就有助於滿足需求,因為系統基本上是一種太陽能儲存裝置,因此也可以利用系統本身在尖峰時刻補足電網之不足,或利用雙向的併網逆變器,擔任太陽能發電場的角色。若有適當政策將太陽能發電場或自用電廠所產生的電力輸出給電網,並採用淨計量電價的模式,就同時可以達到兩用效果。 第三種來源,同時也是接收/儲存點,則是電池。最近的趨勢是利用電池續航力高的鋰電池來快速充電,放電深度與容積效率都非常高,也可以將電池放在地底下以節省建物空間。這些鋰電池組件會以適當的串並聯組合放置,並分為好幾個組列。 電池的末端有一個接線盒,以及同時扮演監督者角色的終止裝置。每個電池都有一個資料埠,通常為CAN或RS485,都以菊環鏈模式輸出到終止裝置,終止裝置就能從最頂層了解每一個電池、組列或整個蓄電池組的健康狀態─這基本上是一種資料集中器和交換裝置,讓電池組件連接或中斷電路。此外,其還能和中央控制進行通訊,決定電池要充電還是放電。 圖2很清楚描繪出電源系統的架構,這是一種模組化的系統,可擴充到適當規模,模組通常都可擴充,每個3~5kW且搭配通訊匯排流,多半是CAN或MODBUS/RS485。中央控制器隨時都可以根據功能需求來配置模組—無論是充電管理、負載管理或診斷檢查。中央控制器內部經過布建可偵測能源使用狀況,基本上就是每小時消耗、儲存和產生/輸出多少kW的電力;同時還能與工業標準的電度表通訊,達到計費、費率設定等目的。 圖2 後段的能源系統架構 SiC提升電源轉換功率密度/效率 DC-DC轉換器模組接收DC匯流排的輸出。依照連結的車輛種類,還有與車輛電池管理系統規定電壓和電流相關需求,中央控制器會將DC-DC轉換器配置到通訊匯流排,這種選項通常用在DC快速充電,還可同時搭配多個DC-DC轉換器模組以達到負載。 DC-AC逆變器也是接收DC匯流排的輸出,但專門用於只能接受AC充電或一般慢充應用的車輛。這種雙向的逆變器可達到兩種功用:一是對DC匯流排輸出以滿足需求,二則是當充電站處於空轉狀態,抑或尖峰時段必須利用充電站來補強電網不足,便可反向對電網輸出電力。目前任何一種電源轉換模組的關鍵效率指數包括下列兩項指標: .高效率 端對端>95%,為現今已經可以實現的數字。 .高功率密度 有助於縮小系統體積,因為建物空間是主要部署成本之一。 以上兩點都可以藉由先進的晶片技術達成。寬能隙(Wide Band Gap)半導體,尤其是碳化矽(SiC)元件,能在高切換頻率、更高的接面溫度下運作,而且效率更高。除此之外,還可自動縮小磁性元件和電容器等被動元件的尺寸。因為有更好的磁性元件材料,在設計上得以縮小體積並降低耗損,因此可以處理更高的功率。 中央控制器四功能確保穩定充電 中央控制器為充電站的大腦,功能包含最基本的使用者/訂戶的辨識及互動,甚至是確保車輛以最適方式充電,結合高效能運算、聯網與感測功能,功能強大。主要功能如下: .使用者身份與支付 就使用者而言這是最常見的功能,透過智慧卡、一次性密碼(OTP)、支援NFC功能之手機,甚至藍牙執行。所有次要系統都由面板的微處理器/微控制器(MPU/MCU)控制。 .電源管理 這是充電站最重要但也最不顯眼的部分。系統控制器會持續監測電源情境:也就是供與需,接著決定如何從供應端滿足需求。無論光靠太陽能是否足以供應負載,或必須結合太陽能和儲存的電力,又或是同時需要從電網提供部分輸入。有些情境下可能會出現供給過剩或需求過高的狀況,其有足夠的智慧功能,可透過更改上述各種電源模組的設定,根據實際狀況傳送電力。 .聯網功能 最新的充電站和相關部署,都必須連上雲端以進行遠端監測及控制;且必須定期與中央管理系統(CMS)對話、回報轉移狀況、參數、診斷結果和運轉數據;同時需要接收來自中央管理系統的運轉指令及設定。因此目前已有多種聯網選項,包括有線及無線。3G/4G、Wi-Fi、乙太網路,甚至是LoRa,都已經用來進行遠端監測。 .保護、診斷和回報錯誤 為了防止故障,系統具有動作迅速的保護機制,會因為大浪或雷擊等外部事件、運轉方面的問題、意外或刻意的誤用/濫用,或者是短路、超溫或過電壓/過電流狀況而驅動。為持續降低運轉成本並將故障時間減至最低,系統會自動回報可能經常發生的問題。模組化的建構方式讓系統可以準確指出現場有哪個故障部分必須更換,這樣技術人員就能在抵達現場前做好準備。 以上簡單介紹太陽能電動車充電系統部署方式。讀者可以到位於印度諾伊達(Noida)的意法半導體印度開發中心,體驗可行的解決方案和各種子模組,也可以根據OEM代工業者的個別需求提供客製化的設計。電子行動和電動車的充電基礎架構是關鍵的焦點領域之一,相關研究也正如火如荼進行,希望解決上述所有功能模組的高效率問題。目前已有端對端晶片可讓電動車充電站得以成真,還有許多設計參考架構加速產品上市時間。 (本文作者任職於意法半導體)
0

三星研發固態電池 電動車續航再進化

本月9日,三星先進研究院(SAIT)與三星日本研究所(SRJ)的研究人員在國際科學期刊Nature Energy發表了一篇全固態電池的研究,該研究提出一款袋式固態電池,其高於鋰電池的效能與續航力,可望進一步支持電動車的發展。 圖 (左起) SRJ技術總監Yuichi Aihara, 研究總監Yong-Gun Lee, SAIT碩士Dongmin Im。圖片來源:Samsung 相較於使用液態電解質的鋰電池,全固態電的能源密度較高,不只能創造更大的容量,而且使用上更安全。然而全固態電池中常見的鋰金屬,充電過程中容易在陽極產生樹枝狀晶體,影響電池的壽命與安全性。 為了克服技術限制,三星的研究人員提出使用銀碳(Ag-C)化合層做為陽極。研究團隊發現,透過將Ag-C放入袋式電池原型,電池可以擁有更大的容量與更常的壽命,並且提高整體的使用安全。加上Ag-C奈米複合層的厚度只有5 µm,因此可將電池陽極的密度增加到900Wh/L,同時可以做出體積小於傳統離電池50%的原型。 此研究的袋式電池原型充電一次,可以支援電動車(EV)行駛最多800公里,並擁有超過1000次循環的壽命,未來可望拓展電動車的電池續航力。
0

TI新數位隔離器於高溫HEV/EV系統實現可靠通訊與保護

德州儀器(TI)近日推出首款滿足汽車電子委員(AEC)-Q100標準的Grade-0環境工作溫度規格標準的數位隔離器。ISO771E-Q1具有1.5-kVRMS工作電壓,能支援Grade-0溫度等級的最高溫150°C。新型隔離器更能保護低電壓電路,免於受到混合動力電動汽車(HEV)和電動汽車(EV)系統中高壓電流事件的影響,並且不必將之設計在冷卻系統中,就能讓溫度降低至125°C以下(通過Grade-1規格驗證的積體電路最高可支援溫度)。 此外,當在系統設計中進行靈活資料傳輸率的控制區域網路(Controller Area Network Flexible Data Rate, CAN FD)通訊時,工程師能結合ISO7741E-Q1和新型的TCAN1044EV-Q1 Grade-0 CAN FD收發器來提升車載網路(IVN)訊號保護以及覆蓋範圍。 符合Grade-0的IC能達到AEC-Q100最高溫度等級(-40°C至150°C)的要求,也能幫助工程師在嚴峻的環境中簡化HEV/EV系統設計,例如48-V的混合動力電動汽車,其內燃機和電池系統的共同運作可將IC周圍的空氣加熱到125°C以上。TI新型Grade-0裝置ISO771E-Q1和TCAN1044 EV-Q1能在高溫150°C下保持可靠的性能,可被使用在HEV/EV系統的高溫區域,而不需增加物料清單或是複雜的設計。 ISO7741E-Q1採用TI的電容隔離技術,具有高1.5kVRMS工作電壓和5kVRMS隔離電壓,讓工程師使用HEV/EV動力傳動系統和HVAC系統時能更可靠,因為這些系統需要透過隔離層進行訊號傳輸,例如啟動發電機、冷卻風扇和牽引逆變器等。 此裝置具有±100 kV/µs高度典型共模瞬態抗擾度(High Typical Common-mode Transient Immunity),以及±8-kV國際電子電機委員會(IEC)61000-4-2接觸放電保護,能夠在嚴峻的汽車環境中提供額外的系統級保護。
0

LUCID Motors與LG Chem合作 推動電動車量產

LUCID Motors宣布與LG Chem長期合作,由LG Chem提供新款電動車LUCID Air所需的電池,並預計在2020下半年量產LUCID Air。針對LUCID Air的生產,LUCID Motors將會依照不同型號LUCID Air的測試數據,配備適合的EV電池,並透過電池技術優化LG Chem電池。 配合電動車LUCID Air在2020年的量產規劃,LUCID Motors看準電池的穩定供應有助於LUCID Motors確認未來幾年LUCID Air的產量,決定與LG Chem立定2020~2023年的合作計畫,同時附帶其他的電動車協議。LUCID Motors的執行長暨技術長Peter Rawlinson表示:「與LG Chem的合作契約提供LUCID Air良好的生產途徑,確保足夠的能量密度(energy density)與電池供應。」 對LUCID Motors而言,LG Chem能夠提供LUCID Air高效率的電能,而LUCID Motors將會依據數據測試來為不同型號的LUCID...
0

油/車雙強合資 Total攜手PSA建EV電池工廠

石油供應商道達爾(Total)旗下電池製造商Saft與寶獅雪鐵龍集團(PSA)旗下的汽車製造公司歐寶(Opel),日前宣布將於法、德兩國創建兩座電動汽車(EV)的電池製造工廠。雙方預計需斥資約50億歐元,同時建立名為Automotive Cell Company(ACC)的合資公司。 Total與PSA預計聯手於歐洲布建兩座電動車電池工廠。 PSA集團董事會主席Carlos Tavares表示,該項合作目標是提供人們乾淨、安全及可負擔的彈性能源選擇,本次合作將促進歐洲汽車電池開發及生產。此外,在法國、德國政府及歐盟授權支援下,該計畫獲得近13億歐元公共資金,賦予該項合作決定性意義。 歐盟於2019年宣布擴大電動汽車銷售量,並且希望在2030年時,歐洲汽車電池市場產能可達到400GWh,為當前需求量的15倍,因此汽車製造商紛紛商討對策。而電池於電動汽車產業位居要角,因此本次合作計畫將利用Saft的技術,於應用範圍及充電時間兩方面體現高能源效能,並降低碳足跡,同時使電動汽車電池能於2023年開始生產。 本次合作項目分為兩階段,其中第一階段將花費2億歐元,自2021年中起於法國布建工廠,預計創造約200個高階工作機會,以開發、鑑定新高效鋰離子電池並擴大商業規模,逐步達到24GWh;第二階段則於德國興建同產能的工廠,最終目標於2030年達到48GWh,意即每年可生產一百萬個電池,約占歐洲市場的10-15%。 道達爾董事長兼執行長Patrick Pouyanné表示,該公司於2016年收購電池製造商Saft,目的是開發能源儲存技術以支援可再生能源(如太陽能及風能)成長。而電力交通的飛速發展提供該公司成長機會,並兌現去碳化經濟的承諾。
0

善用模擬工具 電動車BMS運作更順暢

電動運輸和分散式發電應用等工業電氣化都需要更多電池。這點對汽車和無人機等快速成長的運輸應用十分明顯,在蓄電與開發電動飛機方面也開始累積動能。這些電池並非獨立組件,而是存在更大系統裡的複雜零件,這些系統必須適當運作,才能確保安全和使用能源效率。電池管理系統(Battery Management Systems, BMS)包括硬體和嵌入式軟體,後者即時監控充電電池,在複雜應用時提供可靠電力。   根據Statista的預測,電動車(EV)的整體汽車市占率可望從2017年的1%成長到2025年的14%。各大車廠都正針對這個成長市場開發車輛。隨著車輛的電動化,多個電池組提供引擎、空調和車載資訊娛樂系統電力,監控和維持電池系統運作將成為關鍵的功能。工程師正在開發電池管理系統,確保這個複雜網路的順利運作,而這需要使用最先進的軟體工具。 快速製作BMS虛擬原型 模擬工具組合少不了 BMS是一種複雜、軟體驅動的電動車控制中心,負責監控電池電壓和溫度,並確保健康運作狀態、監控系統連線狀態、測量電流、計算充電狀態(State Of Charge, SOC)和健康狀態(State Of Health, SOH);平衡電池單元間的電力輸入和輸出;以及建立電池和動力總成(Powertrain)或充電系統的連結等功能。隨著未來有越來越多系統仰賴電池供電,對快速製作BMS虛擬原型而言,這些模擬工具組合是不可或缺的幫手。 整體而言,BMS獨立確保電動車在最佳效能狀況下順利安全運作。它將資源分配給最能有效利用的區域,並預先通知操作者潛在問題。在最壞的情況下,BMS可實體斷開系統中的電池,避免可能危及車輛乘員的災難性故障。 設計如此複雜的控制中心是一大挑戰。工程師在開發BMS時,廠商提供的模擬解決方案可全程幫助他們,甚至在運作環境下即時管理BMS。舉例來說,ANSYS的電池管理解決方案包括基於物理的模擬來開發一個系統層級的電池系統與BMS,須利用ANSYS Twin Builder、ANSYS medini analyze和ANSYS SCADE embedded code 。 ANSYS medini analyze根據不同產業的不同標準,進行重要安全分析,包括危害和可操作性分析(HAZOP)、故障樹分析(FTA)、失效模式與效應分析(FMEA),以及失效模式效應與診斷分析(FMEDA)。對車載系統而言,它會確認BMS軟體是否符合道路車輛ISO 26262功能安全標準。 安全分析的第一步是確認和描述BMS的功能和故障。一旦確認故障後,就能進行危害與風險分析(HARA),透過決定汽車安全完整性等級(ASIL)和對應的安全目標和安全需求,確認危害事件及其對安全的衝擊。BMS的部分功能需要嚴謹的開發過程,達ISO 26262的最高安全完整性等級ASIL D。此要求對於軟體安全需求十分嚴格。 BMS通常包括三大結構組件(圖1): .一組由數個電池單元組成的電池組 .一個開關箱 .一個電子控制單元(ECU),包括監控電池單元電壓、電流和溫度的軟體控制器。 圖1 以ANSYS Twin...
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -