- Advertisement -
首頁 標籤 EPS

EPS

- Advertisment -

雙AMR感測實現馬達精確角度測量 自駕系統安全再獲確保

半導體供應商如亞德諾半導體(ADI)便提供磁阻(MR)位置感測器產品和基於分流器的電流感測放大器產品,可使EPS和電子煞車系統中使用的無刷馬達實現高性能換相和安全運作。 自駕趨勢使安全更被重視 近年來隨著人們對於車輛安全性的要求越來越高,先進駕駛輔助系統(ADAS)也相應獲得進一步發展及推廣,其依賴安全氣囊保護駕駛及乘客安全之傳統被動系統輔助。這些新出現的系統,最初是為輔助駕駛在安全危急情況下作出正確決策,長期而言,則能替代駕駛作出決策。這些技術的進步亦引領汽車朝向半自動和全自動駕駛遞進,使電子控制單元(ECU)代替駕駛作出決策,以及讓執行器負責進行車輛轉向和煞車操控,皆為將駕駛車輛的任務移交給感測器、ECU和電力傳動裝置。此趨勢促使廠商開發更可靠、更智慧、性能更高的額外的電力傳動裝置解決方案,而這些解決方案皆須符合ISO 26262功能安全標準。考量風險的安全標準,其需對危險操作情況的風險進行定性評估,並在元件和系統設計中融入安全措施以避免或管控系統故障、並檢測或控制隨機出現的硬體故障或減輕影響。 這些執行器系統通常使用無刷直流(BLDC)馬達驅動,由於這些系統對安全性相當重要,因此設計人員在設計解決方案的硬體和軟體時,須保證系統能滿足汽車安全完整性等級(ASIL)D級的高標準。 MPS確保馬達控制 無刷直流馬達無電刷觸點,因此需使用馬達位置感測器(MPS)測量定子與轉子間的相對位置,以確保定子線圈按正確順序通電。馬達位置感測器在啟動時扮演重要角色,因為此時微控制器無可用的反電動勢確定轉子和定子的相對位置。 傳統上阻塞換相(見圖1a)由三個霍爾開關組成,其用於指示無刷直流馬達中轉子的位置。由於人們要求提高BLDC馬達驅動器(包括EPS系統)的性能,尤其是降低其噪音、振動和聲振粗糙度等級(NVH),以及提高其運作效率,因此阻塞換相逐步被正弦換相控制所取代。霍爾開關則可由安裝在馬達軸末端的雙極磁鐵前面的MR角度感測器代替(見圖1b)。在典型的應用中,MPS也被安裝在ECU組合上,而ECU則被整合到馬達外殼,且安裝於馬達軸末端。 圖1 (a)BLDC阻塞換相控制和(b)BLDC正弦換相控制 ASIL等級反映系統安全性 ISO 26262於2011年導入,其作為一種安全標準,以解決與電氣安全相關系統故障可能造成的危害,之後由2018年版所取代。 針對系統建置安全和風險分析,以確定系統的ASIL等級為必要的過程。而ASIL等級則透過審查系統於運作期間潛在危險的嚴重程度、暴露程度和可控性確定(圖2),例如若人們對EPS系統實施風險和危害分析,可能會得出以下結論:基於這些事件(如轉向鎖止和自動轉向等)的嚴重程度、可控性和暴露性,將這些嚴重事件評定為ASIL D等級;同樣地,對於即將推出的電子煞車系統,則可採用相同邏輯確定不可控事件的嚴重程度,如煞車鎖止或自動煞車。 圖2 ISO 26262 ASIL評級矩陣 根據EPS或煞車系統示例,ASIL D系統評鑑可透過分解子系統實現,如圖3a、圖3b及圖3c所示。 圖3 針對ASIL D系統的ASIL分解方案 每個系統元件不須皆按照ASIL D標準和流程開發,以使ASIL D系統符合規格;但在進行系統等級的審核時,要求整個系統必須滿足要求,且可整合QM、ASIL A、B、C、D等級的子元件組成系統,且系統分解還應確保獨立性,並考量依賴或共因故障的可能性。 傳統EPS系統拓撲架構及潛在問題 典型的EPS系統拓撲結構如圖4所示。EPS ECU根據駕駛施加到方向盤上的轉向扭矩、方向盤位置及車輛速度計算所需的輔助功率。EPS馬達透過施力轉動方向盤,以減少駕駛操縱方向盤所需的扭矩。 圖4 典型的EPS拓撲 馬達軸位置(MSP)角結合相位電流測量資訊,用於對EPS馬達驅動器進行換相和控制。典型EPS馬達控制迴路如圖5所示,所需的扭矩輔助等級因駕駛條件而異,由車輪速度感測器和扭矩感測器決定;扭矩感測器測量駕駛或無人駕駛汽車中的馬達執行器施加至方向盤的扭矩;微控制器隨後使用MSP資料和相位電流資料控制提供馬達所需輔助的電流負載。 圖5 典型的EPS馬達控制環路 MPS感測器故障可能導致或加重系統故障,如轉向鎖止或自動轉向,因此MPS為EPS系統中的重要元件,其中關鍵在系統需能綜合全面診斷感測器故障,以確保在MPS感測器出錯或發生故障時能夠繼續正常運作,而不會發生嚴重的系統故障,或者在出錯時系統能以安全方式停止運作。 電流感測放大器通常用於間接精確測量馬達負載,一般應用於三個馬達相位中的兩個相位,提供額外診斷資訊(可作為整體系統安全保障措施的一環)。 此外,高度準確的馬達位置和相位電流測量可以從系統層面改善EPS馬達的控制性能,實現高效、安靜、平穩的轉向,進而提升駕駛體驗,因此是系統中的關鍵元件。 雙AMR感測器 確保穩定操作 在EPS或其他安全性關鍵馬達控制應用中,可採用不同的方法來使ASIL D符合規格。以下示例便將雙重各向異性磁阻(AMR)馬達位置感測器和像是ADI的電流感測放大器整合到此系統中,以提供所需的性能等級和額外需要,從系統等級實現ISO 26262 ASIL D合規性。 在圖6中,用不同技術(如霍爾、GMR或TMR)的另一個感測器對雙AMR感測器進行完善和補充。雙AMR感測器作為主(高精度)感測通道,第二個不同感測器技術通道有三個用途: .啟用「三選二」(2oo3)比較,以驗證當與其他系統輸入組合時,其中一個感測器通道是否出現故障。 .在發生可能性極低的兩個AMR通道都故障的情況下,提供位置回饋。 .在馬達極數為奇數的情況下,為微控制器提供360o象限資訊,用於馬達換相。 圖6 適用於安全性至關重要的應用的馬達位置和相位電流檢測結構示例 準確的角度測量將繼續由雙AMR感測器的兩個通道提供。額外的系統診斷,如馬達負載和軸的位置,可以從準確相位電流檢測放大器的動態狀態(反電動勢)間接推斷得出。 若查看此感測器架構示例中所有可能的感測器故障模式,可以看出應始終有兩個位置感測器輸入可用於可靠性檢查。即使在兩個AMR通道都因常見故障原因以致同時故障,這種極不可能的極端示例中,仍然可以使用來自輔助感測器通道的降級位置感測資訊,以及電流感測器在動態狀態下提供之反電動勢資訊進行交叉比對,以確保系統基本功能繼續正常運作。 這種系統等級的診斷功能將確保不會發生嚴重的故障模式,並且確保系統實現ISO 26262 ASIL D合規性,之後便可以安全關閉系統的電源,或者轉入跛行回家模式(Limp Home Mode),以返回經銷商進行維修。 感測器設計改善乘車體驗 隨著用於提高汽車安全性的ADAS推出,以及全自動和半自動駕駛車輛的出現,人們開始要求更可靠、更智慧、性能更高的額外電力傳動裝置解決方案,同時要求需符合ISO 26262功能安全標準。供應商如ADI提供的馬達軸位置和相位電流感測產品,不僅能提高性能,實現更順暢、更高效的馬達控制要求,同時提供在EPS或煞車系統等安全性至關重要的應用中,能夠實現所需的額外高ASIL要求。而ADI提供的ADA4571-2雙AMR感測器為需要額外和獨立感測通道等安全性的重要應用設計,其為一雙通道AMR感測器,整合訊號處理放大器和ADC驅動器。 該產品含兩個AMR(Sensitec AA745) 感測器和兩個放大器訊號處理ASIC;該感測器提供低角度誤差訊號,通常在0.1度範圍內,具備可忽略的遲滯現象、高頻寬、低延遲和良好的線性度。 這些特性能夠協助減少轉矩波動和可聽見的雜訊,幫助實現順暢、高效的BLDC馬達控制。此外,AMR感測器可在飽和大於30Mt的條件下運作,並沒有磁場視窗上限,而且感測器能在高磁場條件下運作,因此解決方案能承受嚴苛環境的雜散磁場。 至於ADI的AD8410電流感測放大器能夠在EPS和其他BLDC馬達控制系統中的分流電阻上測量雙向電流,為高電壓、高解析度和高頻寬的分流放大器,其用於嚴苛環境中提供所需的準確測量、診斷安全性的應用,幫助減少轉矩波動和可聽到的雜訊,實現順暢、高效的BLDC馬達控制(如EPS或煞車),並改善駕駛體驗。 (本文作者為ADI汽車電氣化部策略行銷經理)
0

強化能源效率/可用度/效能/安全 車用EPS晶片組超展開

其中如半導體商英飛凌(Infineon)便提供晶片組,適合未來數代EPS使用,包括所有主要的半導體元件,例如電源供應器、微控制器、半橋驅動器、MOSFET、CAN收發器及感測器。以上所有元件都已上市,使用者可由單一供應商的微調晶片組因應所有需求,有助於縮短開發時間及降低成本。 電子動力轉向使用電控馬達輔助轉向。感測器偵測由驅動器觸發的轉向扭矩,然後將資訊轉送至電子控制單元(ECU),計算所需的轉向輔助,並控制伺服馬達。 為什麼要供應完整的EPS晶片組?目標是提供電子動力轉向系統所有必要的半導體元件,並進行微調使其達到高可用度,實現容錯操作或失效安全操作。結果協調運作的元件,將提供可靠的互用性及整合相容性。其中有一項重點就是保證功能安全,因此所有相關元件不僅要符合最高的汽車品質標準,也必須依據ISO 26262進行設計。 EPS展示器重安全/效能/整合 英飛凌已開發的示範板中包含晶片組元件及機械展示器,可控制6相電動馬達。圖1顯示展示器配置,圖2為示範板及所有晶片組元件。其中包括電源供應晶片(OPTIREG PMIC、TLF35584)、3相半橋驅動器(TLE9183QK)、32位元微控制器(TC23x搭配200MHz及2MB快閃記憶體)、扭矩感測器(TLE4998C8D)、馬達位置感測器(TLE5309D)及角度感測器(TLE5014D)、MOSFET(採用SS08封裝),以及CAN FD收發器(TLE9251VLE、TLE9252VLC)。 圖1 電子動力轉向應用展示器 圖2 體積小的示範板搭配EPS晶片組 展示器的所有使用的元件都妥善搭配,並設計提供高度的功能安全、能源效率及整合密度。例如EPS系統預先指定使用安全電源供應器,並提供對應的監控及保護功能作為ASIL D功能,此外也獲得橋式驅動器支援。所有系統使用的感測器均依據ISO 26262設計,提供高測量精度。AURIX系列強大的微控制器可選擇用於效能、快閃記憶體容量、計時器架構及周邊設備。 此外,MCU具有獲得ISO 26262支援的整合式安全/維安概念、硬體備援及硬體安全性(HSM模組)。最後,MOSFET提供非常低的導通電阻(40V時RDS(ON)為0.9m),以及良好的切換效能,採用小巧堅固的封裝(SS08或sTOLL)。 該展示器架構為6相系統,具備兩個獨立隔離的3相子系統,提供所需備援(圖3)。因此雙感測器、電源供應晶片、微控制器、半橋驅動器及MOSFET半橋,可由兩個獨立電池供電運作,實現容錯操作系統。兩個子系統互相獨立運作,每個系統提供一半扭矩至整個EPS系統。如果發生故障導致一個子系統失效,另一個子系統會按照比例接手EPS功能。 圖3 以EPS晶片組為基礎的備援展示器架構方塊圖 感測器備援系統提高車輛功能安全 為了確保車輛具備高度的功能安全,需要具有備援的系統分割,以及高效可靠的感測器。這是唯一確保高可用度的方式,藉此讓系統在元件故障時仍舊維持完整功能。因此電子動力轉向系統的感測器,不僅要非常精準,也必須確保功能安全。這裡使用的感測器可於ISO 26262系統中應用。像是英飛凌便因應感測器備援需求,將兩個感測器整合在雙感測器封裝中(圖4)。 圖4 TLE4998C3D、TLE5014D及TLE5309D等雙晶粒感測器,有助於簡單高效的備援實作 而線性霍爾感測器TLE4998C8D可確保精準偵測轉向時的扭矩,較精確地掃描線性或角度位置,並以數位方式補償溫度和機械應力,確保在整個溫度範圍及使用壽命期間,都享有良好的穩定度。通訊協定可讓控制單元傳輸測量資料,TLE4998C8D以SPC(短PWM代碼)通訊協定整合兩個可獨立編程的線性霍爾感測器IC。為了彈性使用,使用者有多種介面可供選擇(SENT、SPC、PWM僅為單晶片)。 TLE5014D角度感測器也是雙晶片版本,有助於在系統設計中輕鬆實作所需備援;感測器可在完整的溫度分布及使用壽命期間,精準地運作,是動力轉向應用的理想選擇之一。感測器會預先設定,並針對溫度預先校正,協助使用者輕鬆實作。使用者也可在此選擇不同介面 (SENT、SPC、SPI及PWM)。 雙感測器晶片TLE5309D在單一封裝結合AMR及GMR感測器,並具備診斷功能。雙GMR/AMR角度感測器可在關鍵安全馬達應用中,用於類比角度位置偵測。TLE5309D結合精確的AMR感測器,以及GMR感測器寬廣的360度量測範圍。感測器具備低傳播延遲(小於9微秒),能夠因應電動馬達及電子動力轉向系統中有關速度及精度的要求。此外,感測器也能在70微秒內快速啟動,總耗電量也相當低。 半橋驅動器電源供應器及電壓監控 安全相關系統也需要監控電壓供應,以確保系統元件功能。電源供應及監控裝置TLF35584(圖5)可在遵循ISO 26262至ASIL D的情況下支援ECU設計。TLF35584相關的主要監控功能包括:產生供應電壓的欠電壓/過電壓監控、微控制器的外部看門狗(Watchdog)監控,以及AURIX MCU安全管理單元的外部監控。透過「安全狀態」輸出,讓系統享有不受微控制器影響的關斷路徑,就可整合監控前述監控功能的狀態;電壓監控則由自我測試(BIST)支援。 圖5 針對AURIX微控制器及感測器最佳化的TLF35584QK/QV安全電源供應器,是EPS應用的選擇之一 TLF35584透過獨立控制器輸出向控制器提供電壓,並提供監控電壓用於微控制器(3.3V或5.0V,可選擇)、類比數位轉換器(ADC)、待機控制器、多個收發器及感測器。感測器可使用兩個獨立的追蹤器輸出,是設定安全相關感測器系統的必備項目。電壓調節是以包含DC/DC預穩壓器及線性後穩壓器的架構為基礎。為了支援冷啟動相關系統,TLF35584提供選用的升壓轉換器以便穩定輸入電壓,並可擴大功能範圍達到3V電池電壓。 TLE9183QK 3相半橋驅動器IC也是依據ISO 26262開發,具有各式各樣的保護及監控功能,包括「緊急操作模式」(Limp Home)功能。功率循環可由0調整至100%,沒有限制。其他功能包括三電流感測器放大器、低靜態電流運作模式,以及相位電壓回饋功能搭配SPI可編程閾值。 安全微控制器具高度擴充與即時能力 AURIX系列的32元多核心微控制器,是依據傳動系統及汽車安全應用需求量身打造。該系列產品具備高度擴充能力(單、雙或三核心、80至300MHz、0.5至8MB快閃記憶體等等),並以多種封裝選項供應。AURIX 系列具備高度即時能力,整合安全/維安功能,是各種汽車應用的平台選擇之一。其中包括引擎控制單元、變速箱控制、電動車與油電混合車控制,以及懸吊系統、煞車系統、電子動力轉向系統、安全氣囊與駕駛輔助系統。 該架構開發程序遵循ISO 26262規範,其設計方式能以非常高效的方式實作ASIL D安全需求。微控制器結合多核心架構,以及專業的安全技術,例如安全內部通訊匯流排,以及分散式記憶體保護系統;特殊保護機制可整合不同應用領域的軟體,讓多項應用程式及作業系統在AURIX平台順利執行,即使ASIL等級不同也沒問題。此外也整合硬體安全模組(HSM),提供高度保護避免遭到操控。 市場追求可用度及可靠度高線控轉向 英飛凌自2019年年中開始供應完整的EPS晶片組將,此外之後也規畫提升效能、整合密度(更多功能,縮小封裝尺寸)及進一步加強EMC耐受度,搭配新型微控制器(新一代AURIX微控制器)、電源供應IC、半橋驅動器及感測器,用於未來的EPS晶片組產品。 至於未來的自動化階段方面(第三級以上),電子轉向需求將增加。一般預期市場未來出現的轉向系統,不會採用目前在方向盤與轉向裝置之間使用的機械耦合。這種線控轉向(Steer-by-wire)概念需要更高的可用度及可靠度,該公司EPS晶片組以此為方向,企圖實現具未來性的轉向系統設計。 (本文作者Goran Keser為英飛凌科技汽車系統工程部門嵌入式軟體及演算法資深經理;Christoph Unterreiner為英飛凌科技汽車微控制器合作關係管理資深經理)
0

東芝推多路電源輸出IC實現車輛安全

東芝(Toshiba)推出通用系統電源積體電路(IC)TB9045FNG,該產品支援多路電源輸出及汽車應用的功能安全。新推出的IC提供四個版本,輸出電壓範圍在1.1V到1.5V之間。量產定於本月啟動。 電動輔助轉向盤(EPS)和自動煞車系統等汽車安全控制組件,須滿足ISO 26262功能安全標準中規定的最高車輛安全完整性等級ASIL-D。 新款IC內建各種診斷功能,例如過高低電壓、過高熱及內部振盪器頻率異常等等,也能監視外部MCU的監視計時器(Watchdog timer)電路並判斷整體系統的異常狀態。這款IC還能自行檢查IC內部之硬體電路且診斷電路中的潛在故障,以確保更高的功能安全。 東芝亦能從外部電腦注入虛擬的異常狀態並模擬系統故障,將為客戶提供功能安全FMEDA等文件服務,以支援硬體/軟體/文件之三個面向的安全設計。
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -