- Advertisement -
首頁 標籤 ECC

ECC

- Advertisment -

技術規格全方位精進 DDR5發展動能十足

2020年7月14日記憶體技術標準的領導組織JEDEC正式發布新一代的記憶體標準DDR5 SDRAM,標準編號JESD79-5,並收取369美元的下載費用。DDR記憶體自1998年開始倡議與運用至今已來到了第五代,每一代約在產業使用4至7年時間,在DDR4技術逐漸難以提升、難以滿足更高要求下,產業將迎向使用DDR5(表1)。 DDR5期望運用於兩個領域,一是用戶端系統(Client System),即個人電腦;另一是資料中心(Data Center),即伺服器。其他領域與裝置尚非其運用目標。DDR5運用何種技術提升而能滿足更高要求,本文以下將對此探討。 降低運作電壓/提高資料傳輸率 DDR記憶體每次改朝換代,均會因應更先進縮密的半導體製程而降低運作電壓,DDR5確定使用1.1V,較DDR4低0.1V。若檢視歷代的DDR記憶體運作電壓可發現,運作電壓的降幅愈來愈小,從0.8V、0.7V降至0.3V,而今僅降0.1V,此並非是記憶體所獨有,而是整體半導體產業均面臨的技術課題。更低的電壓也意謂著在電晶體漏電受控制下可以更省電,不過也意謂著電壓準位更難精準控制,對此一挑戰後頭將再敘述。 同時DDR5預估以4.8GT/s(T為Transfer)傳輸率起跳,較DDR4發展至最後段的3.2GT/s快上50%,未來也將持續提升,預計將能比DDR4快一倍,達6.4GT/s,甚至是8.4GT/s。DDR5能夠提升傳輸率的原因在於使用決策回授等化器(Decision Feedback Equalization, DFE),可以使傳輸訊號少受干擾、更清晰。 晶片內實現ECC DDR4與更之前的記憶體均採行資料記憶體、錯誤糾正碼(Error-Correcting Code, ECC)記憶體各自分離的設計,如此等於在記憶體模組(Dual In Line Memory Module, DIMM)的板卡上多占據一點印刷電路板(Printed Circuit Board, PCB)面積,進而排擠可放的DRAM記憶體顆數。 新的DDR5主張直接運用更先進縮密的製程技術,把ECC的功效電路直接做進DRAM裸晶內,每顆DDR5記憶體晶片內都帶有ECC功效,如此有機會增加每一條DIMM模組上的晶片與容量,此一新特點也稱為On-die ECC。 單顆晶片加大容量/延長爆發長度 Rambus的相關文章認為DDR4每一個記憶體顆粒最高容量為16Gb,實務上美光(Micron)、三星(Samsung)已有32Gb容量,海力士(Hynix)則為16Gb。不過DDR5被寄予單顆更高容量的厚望,目前預估單顆最大容量達64Gb,意謂著能在不增加DIMM上的記憶體顆數下直接讓容量倍增。 DDR5也增加爆發(Burst)長度,DDR4為BC4、BL8,DDR5將為BC8、BL16,此一強化提升同樣著眼在提升記憶體系統的整體存取效率。爆發長度提升使DDR5一次就可以傳遞64Bytes的資料,這剛好是典型CPU裡一條快取線(Cache Line)的資料量,此意謂著一次爆發週期剛好滿足CPU的資料需求,省去再次存取,同時也沒有無效傳遞。 管理匯流排升級 自DDR3開始至今DDR系列的記憶體在系統管理上均採行Serial Presence Detect(SPD)介面,主機板上的記憶體控制器(即晶片組或已整合至CPU內的晶片組電路)透過SPD介面與DIMM記憶體模組溝通聯繫,DIMM上有一專設的Electrically-Erasable Programmable Read-Only Memory(EERPOM)記憶體,在此應用情境下稱為SPD記憶體,該記憶體內存放著該條DIMM上的各種組態配置資訊、參數資訊,如容量、傳輸延遲(Latency)等。 不過DDR5不再使用SPD介面,而是改用I3C介面。I3C介面是由Mobile...
0

DDR5標準正式發表 記憶體大廠超前布署升級商機

負責制定DRAM產業標準的JEDEC,在台北時間15日清晨正式發表DDR5標準,與現有的DDR4相比,DDR5最大的特點在於DRAM晶粒將內建糾錯編碼(ECC)邏輯電路,同時DIMM模組上也將全面搭載電源管理晶片(PMIC),操作電壓也會從1.2V降低到1.1V。為了搶食DRAM產業暌違多年的升級商機,DRAM大廠無不競相展開準備動作,預期到2021年下半,就有機會看到DDR5記憶體在伺服器產品上現身。 JEDEC JC-42記憶體委員會主席Desi Rhoden表示,DDR5標準納入了許多新的技術,以提高DRAM的效能、可靠度,並且將省電模式納入標準中。藉由導入DDR5記憶體,伺服器與個人電腦等大量使用DRAM的應用產品,都可望在性能、能源效率等方面有更上一層樓的表現。 與DDR4等現有的DRAM標準相比,DDR5最大的幾個特性包含在記憶體晶粒內部直接內建ECC邏輯電路、模組上全面搭載PMIC、DRAM工作電壓由1.2V進一步降低到1.1V、改用MIPI聯盟I3C基本規格做為系統管理匯流排。藉由這些新技術,DDR5記憶體所使用的半導體製程,會比DDR4有更大的微縮空間,帶來儲存容量提高的效益,並且在I/O性能上比DDR4提高至少50%。DDR4的頻寬目前已經達到3.2Gbps的理論最大值,但第一代DDR5記憶體的頻寬將從4.8Gbps起跳。 參與DDR5標準制定的記憶體業者預期,新標準的導入期約需要12~18個月,但因為許多記憶體大廠都已經在標準正式公告前,就提供DDR5的工程樣品給客戶參考,等於相關產品的研發工作已經超前布署,故最快在2021年下半,就有機會看到伺服器開始搭載DDR5記憶體。 舉例來說,美光(Micron)科技日前已發表技術應用支援計畫(Technology Enablement Program, TEP),該計畫將提供技術資源、優先取得產品,以及和生態系統夥伴的接洽機會;並協助設計、開發和認證搭載最新DRAM技術DDR5的次世代運算平台。 圖 美光宣布DDR5支援計劃。來源:美光 今年1月美光宣布DDR5 RDIMM送樣後,便以此為基礎推出DDR5技術應用支援計畫,將促使業界朝向發揮次世代、以資料為中心等應用價值的目標向前邁進。益華電腦(Cadence)、瀾起科技(Montage)、Rambus、瑞薩電子(Renesas)和新思科技(Synopsys),均為DDR5技術應用支援計畫成員。 DDR5改善DRAM的效能、容量和可靠性,協助現代資料中心為持續快速成長的處理器核心數,提供記憶體頻寬,也有助於滿足顧客對資料中心的可靠性、可用性和可支援性方面不斷上升的需求。與前代DDR4相比,DDR5將提供兩倍以上的有效頻寬,減輕每個核心頻寬的密集運算,在各種應用上實現高效能,並改善功耗管理。 通路合作夥伴在新技術的開發和採用方面也扮演著非常重要的角色。在DDR5技術應用支援計畫中,美光將與經銷商、附加價值銷售商和OEM/ODM等夥伴合作,由合作夥伴負責將搭載 DDR5 的創新產品推進市場。 符合資格的合作夥伴可藉由參與此計畫充分利用與美光的國際合作、品質和支援,更可獲得其他優勢,包含: ・特定DDR5元件和模組 ・後續推出之DDR5產品 ・協助產品研發和評估的規格表、電氣和熱導模型等,以及有關訊號完整性的諮詢和其他技術支援 ・協助晶片和系統層級設計的生態系統夥伴支援
0

Maxim低功耗MCU適合工業/健康/IoT感測

Maxim日前宣布推出MAX32670低功耗Arm Cortex-M4微控制器(MCU),元件帶有浮點運算單元,在有效降低功耗、縮小尺寸的同時,提高系統可靠性,適合用於工業、健康和及物聯網(IoT)。元件透過錯誤碼校正(ECC)保護所有嵌入式記憶體,包括快閃記憶體和SRAM,提供可靠性較高的MCU。 有關Maxim Integrated低功耗控制器方案的詳細資訊,請瀏覽:https://www.maximintegrated.com/cn/products/microcontrollers/low-power-microcontrollers.html?utm_source=Maxim&utm_medium=press-rels&utm_content=LPMicrosLP&utm_campaign=FY20_Q4_2020_JUN_MSS-LPMicros_WW_MAX32670PR_EN&utm_term=WF6784 訂購MAX32670或瞭解更多資訊,請瀏覽:https://www.maximintegrated.com/cn/products/microcontrollers/MAX32670.html?utm_source=Maxim&utm_medium=press-rels&utm_content=32670IC&utm_campaign=FY20_Q4_2020_JUN_MSS-LPMicros_WW_MAX32670PR_EN&utm_term=WF6784 請由此連結下載高解析圖片:https://www.maximintegrated.com/content/dam/images/newsroom/2020/max32670-pr.jpg 在許多工業和IoT應用中,高能量微粒或其他惡劣條件會破壞正常工作時的記憶體,造成其位元翻轉(特別是當半導體製程降至40nm,甚至更低的情況下),因而中斷MCU工作,並產生錯誤甚至危險的結果。為防止此類災難性後果的發生,MAX32670利用ECC保護其整個記憶體空間(384kB快閃記憶體和128kB SRAM)以防位元翻轉,大幅提升了可靠性。憑藉ECC,硬體能夠檢測並修正位元錯誤,避免位元翻轉錯誤對實際應用產生的不利影響。  MAX32670能夠以40µW/MHz功耗執行快閃記憶體命令,與最接近的競爭方案相比,功耗降低40%。為電池供電的感測器應用提供功耗最低的解決方案。此外,與最接近的競爭方案相比,MAX32670的尺寸減小了50%,幫助開發人員降低方案尺寸及物料成本。
0

麻省理工發表新款ID晶片 連動加密程式更安全

為了防範供應鏈中出現盜版商品,製造商、百貨公司及海關等單位使用無線驗證方法,如RFID等技術,試圖解決商品盜版等問題。然而傳統的解決方案有其限制,包含因標籤體積大,無法使用在小型商品,抑或標籤本身耗電量太高等問題。對此,MIT日前釋出一款尺寸僅1.6平方毫米大小的ID晶片,除降低成本、還增加了新的應用場景,並提升訊號可傳遞的距離。 MIT開發新型ID晶片。(圖片來源:MIT News) 根據經濟合作暨發展組織(OECD)2018年的評估,他們預測2020年的仿冒品價值將達到2兆美元,但是現在普遍採用的RFID驗證受限於大小,無法應用在汽車零件、矽晶片等產品上,同時RFID耗電量大、 也沒有加密程式可保障資料安全。 針對ID晶片的優化,MIT的研究團隊起先捨棄RFID的外包裝以降低成本,為產品的小尺寸設計定調。接著團隊將通訊頻率設定在100 GHz到10 THz之間,透過建立天線陣列來增長可傳訊的距離。而MIT的晶片針對傳輸過程也進行一連串優化。該晶片上與RFID一樣有天線陣列,透過背向散射(backscatter)的過程,接收讀取器並傳輸資訊給標籤,並將標籤處理過的資料回傳到接收器。傳輸之外,MIT的晶片會將訊號分拆(split)、混合(mix),最後送出加密後的資料。 新研發的ID晶片在天線下方有讓光線通過的洞,當光照到下方的光電二極體後,光電二極體會產生1V左右的電壓,驅動晶片的處理器來運作加密程式ECC(elliptic-curve-cryptography)。ECC整合私鑰與公鑰,私鑰只有使用者知道、公鑰則有多人持有。在研究人員的系統中,ID標籤須要公私鑰皆有的狀況下才能被讀取,確保沒有私鑰的駭客無法讀取資訊,藉由雙重的識別加強資安保障。
0

結合GTC安全方案 聯網汽車TCU/ECU防護增

為此,SecureRF和意法半導體(ST)合作開發出一種符合未來需求的低功耗安全解決方案,即使在最小的汽車處理器上也能極快運行。SecureRF的WalnutDSA和Ironwood KAP兩種安全演算法最近已移植到意法半導體的SPC58ECxx 32位元車規處理器平台上;兩家公司合作開發了一個模組,演示資訊服務控制單元(TCU)與多個ECU的相互認證過程,並在2018年TU-Automotive Detroit 展會上展出了該模組。 Walnut數位簽章演算法(DSA)和Ironwood金鑰協商協議(KAP)基於SecureRF群理密碼學(GTC)。這一密碼學分支雖然不是什麼新事物,但目前有助於解決一個相對較新的網路安全問題:如何保護物聯網、汽車系統和其它網路應用中越來越多的資源受限的設備。 GTC具有三重優勢,運算速度即使在最小的設備上也非常快;RAM/ROM占用極低;能夠抵抗所有已知的量子攻擊。GTC計算效率高,比其它加密方法更省電。SecureRF可以通過硬體或軟體來實現GTC解決方案。 MCU上運行GTC 性能優勢顯著 SPC58ECxx是32位元微控制器,針對車身、網路、安全系統和通訊連接應用設計的通用微控制器系列產品,基於兩顆180MHz e200z4d PowerPC處理器內核,整合高達4MB的快閃記憶體和512KB的RAM、硬體安全模組以及許多通訊周邊,包括LIN、SPI、UART、乙太網AVB、Flexray和CAN FD控制器;SPC58ECxx是按照ISO 26262標準設計,並支援ASIL-B安全關鍵型應用安全等級標準。 演示程式運行在SPC58ECxx探索板上,與基於ECC的驗證方法相比,GTC方案性能優勢非常明顯,最終執行時間顯著縮短。表1是GTC與橢圓曲線密碼(ECDSA+ECDH)方案的執行時間和ROM/RAM占用情況比較表,其中,橢圓曲線密碼(ECDSA+ECDH)方案的執行時間是GTC方法的12.6倍。基於GTC的解決方案方便設計人員為車載微控制器增加重要的安全功能,例如,安全啟動和安全硬體更新,並使基於SPC58ECxx的TCU能夠與車上資源有限的ECU相互認證,該演示解決方案如圖1所示。 圖1 GTC解決方案示意圖 用於互聯ECU上優勢更加突顯 保護非常小的ECU處理器的安全是設計人員首要考慮的問題,也是該解決方案最重要的優勢之一。快速認證是必備的,對於許多汽車應用,其它資料安全方法可能並不實用。基於GTC的方法可安裝在最小的處理器上,還能實現較好的性能,圖2比較了GTC和ECC在8位元處理器上的運行性能。 圖2 GTC和ECC在8位處理器上性能比較 在圖2中,每個垂直尖峰表示一次驗證過程結束。完成一次認證過程,ECDSA/ECDH用時7.69秒,而SecureRF的WalnutDSA和Ironwood KAP僅需68毫秒,是前者的1/90。這一速度優勢,再加上超低功耗和更低的RAM/ROM占用,使SecureRF方法非常適合於資源受限的處理器。 SecureRF加密演算法是SPC58ECxx內建硬體安全模組(HSM)的新選擇。該硬體安全模組將安全子系統和SPC58ECxx主處理器內核完全隔離,且還適用於沒有HSM模組的產品,例如SPC582Bxx。SPC582Bxx是SPC58ECxx的精簡版,搭載一個主頻120MHz的e200z4d PowerPC處理器內核、高達1MB的快閃記憶體和192KB的RAM。但是,硬體安全功能的缺乏使得軟體安全功能非常必要。軟體安全方案必須能夠保持良好的性能,同時不占用過多的資源,以免對系統造成任何過多負荷。考慮到汽車系統設計壽命多達數年,汽車系統需要放眼未來資料安全發展趨勢,應對即將到來的量子計算安全威脅。SecureRF方法採用後量子加密技術,能夠應對當前已知的所有攻擊。 (本文作者皆任職於意法半導體)
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -