CoolSiC
400kW DC充電器 英飛凌CoolSiC助實現超快速EV充電站
西班牙電源轉換集團Ingeteam與英飛凌(Infineon)攜手合作,打造超快速(Superfast)電動車(EV)充電服務,讓客戶享有最佳體驗。Ingeteam所提供的INGEREV RAPID ST400轉換器的額定功率為400kW,內建採用EasyDUAL 2B封裝的CoolSiC MOSFET。每個充電點都布建了八個英飛凌FF6MR12W1M1_B11模組。依據個別車輛充電能力的不同,一輛電動車最快只需停靠10分鐘,就能完成80%的電池充電,相當於傳統內燃機車輛的加油速度。
INGEREV RAPID ST400轉換器的設計已在現實生活中成功運作獲得實證。在去年,已由西班牙的充電技術服務商IBIL公司為多元能源供應及加油站營運商Repsol公司成功開發、實作及試行整合此項技術的第一個專案。這項專案布建於比斯開灣(Bay of Biscay)地區的烏加德比塔(Ugaldebieta),作為電動車領域的燈塔計畫,並在2019年10月開始試行。專案設施位於交通非常繁忙的A-8高速公路,設置四個超快速充電點,可確保在同時接入四台車的情況下,以最佳方式自動分配可用電源。此外,自開始至今都運作順利,沒有發生任何重大缺失。
英飛凌工業電源控制事業部總裁Peter Wawer博士表示,SiC實現了超快速的切換速度以及更低的切換損耗,從而縮短了充電時間。加上所需的冷卻元件大幅減少,也讓充電站的體積縮小了近1/3。SiC的物理特性可為電動車做出重大貢獻。多項不同的消費者研究顯示,電動車的市場接受度,有極大部分取決於高效快速的充電基礎設施。我們已經證明足以提供這項基礎技術。
拓展碳化矽應用 英飛凌發表62mm CoolSiC模組
英飛凌1200V CoolSiC MOSFET模組系列新添62mm工業標準模組封裝產品。62mm封裝之產品採用半橋拓撲設計及溝槽式晶片技術,此封裝為碳化矽打開了250kW以上,矽基IGBT技術在62mm封裝的功率密度極限,中等功率應用的大門。相較於一般的62mm IGBT模組,碳化矽的應用範圍更擴展至太陽能、伺服器、儲能、電動車充電樁、牽引以及商用感應電磁爐和功率轉換系統等。
圖 此62mm模組配備英飛凌CoolSiC MOSFET 實現極高的電流密度。來源:英飛凌
該62mm模組配備英飛凌CoolSiC MOSFET,可實現極高的電流密度。其極低的開關損耗和導通損耗可減小散熱元件尺寸。在高開關頻率下運作時,可使用更小的磁性元件。透過英飛凌CoolSiC晶片技術,客戶可以設計出尺寸更小的變頻器,進而降低整體系統成本。
新產品採用62 mm標準基板和螺絲固定方式,具有高強固性的外殼結構設計,且設計經過最佳化,可達到最高的系統可用性,同時降低維修成本以及停機損失。良好的溫度循環能力和150°C的連續工作溫度(Tvjop),帶來系統可靠性。其對稱性的內部設計,能讓上下開關達到相同的切換條件。亦可選配熱介面材料(TIM),以進一步提高模組的熱效能。
採用62 mm封裝的CoolSiC MOSFET 1200V分別提供6mΩ/250 A,3mΩ/357 A和2mΩ/500A型號選擇。另外還推出有助快速特性化(雙脈衝/連續作業)的評估板,為便於使用,還提供了可彈性調整的閘極電壓和閘極電阻。此外,還可作為批量生產驅動器板的參考設計。
Si/SiC/GaN各擅勝場 功率開關元件選用要仔細
Si/SiC/GaN材料特性比較
目前,市場上絕大部分的功率元件從20V到數kV都是以矽的技術為基礎,當矽的技術到達其極限,材料性質就會限制住功率半導體元件的效率提升空間,金氧半場效電晶體(MOSFET)是最常見的功率半導體元件,其導通電阻受限於崩潰電壓,也就是磊晶層的特性,導通電阻的公式如公式1:
公式1
簡化之後,就是「矽的極限」關係式
...
英飛凌CoolSiC MOSFET與TRENCHSTOP IGBT推出Easy 2B封裝
相較於傳統三階中點箝位拓撲,進階中點箝位(ANPC)變頻器設計可支援半導體裝置間的均勻損耗分佈。英飛凌科技旗下1200 V系列混合式SiC與IGBT功率模組新增採用ANPC拓撲 EasyPACK 2B封裝。此模組分別針對CoolSiC MOSFET和TRENCHSTOP IGBT4晶片組的損耗甜蜜點進行最佳化,因此具有更高的功率密度及高達48 kHz的切換頻率,特別適合新一代1500 V太陽能光電和儲能應用的需求。
全新ANPC拓撲支援99%以上的系統效率。比起具有較低切換頻率的裝置,在像是1500 V太陽能串列型變頻器的DC/AC級中實作混合式Easy 2B功率模組,可實現更小的線圈。因此,其重量將遠低於採用全矽組件的相應變頻器。除此之外,使用碳化矽的損耗也小於矽的損耗,如此一來,須排放的熱減少了,也可縮小散熱器的尺寸。整體來說,可打造更精巧外型的變頻器,並節省系統成本。相較於五階拓撲,3階的設計可降低變頻器設計的複雜度。
採用Easy 2B 標準封裝的功率模組具有領先業界的低雜散電感特性。此外,CoolSiC MOSFET晶片的整合式本體二極體可確保低損耗續流功能,無須額外的SiC二極體晶片。NTC溫度感測器有助於監控裝置,PressFIT壓接技術則可縮短生產時的組裝時間。
落實快速DC充電架構 電池電動車行駛距離大躍進
為此,汽車充電必須要採取另一種截然不同的全新方法。目前開進充電站或在充電站停留的概念仍有其關聯性,但或許只適用於較長的旅程。更可行的方式,可能是趁電動車停在公司、購物中心或車站時一邊進行充電,確保汽車隨時充了再開。
電動車充電選項多樣 前瞻性概念逐漸萌芽
多數車輛皆支援透過標準家用的單向交流電(AC)電源進行充電,讓所有消費者能在家利用晚上時間為汽車充電。AC充電解決方案的範圍包括,將車輛接到家裡的電源插座,再接到線上控制與保護裝置(IC-CPD),最後接到整合在電源插座和車輛之間的小接線盒。部分解決方案可能裝載於壁掛式固定裝置內,也就是所謂的「壁掛式機櫃」充電器。此方法通常會在電源裝置和車輛之間加裝一個通訊元件,並內含接地和保護功能。
不過,電池充電需要的是直流(DC)電源,因此車輛內建的充電電子元件必須將AC轉換為DC。包括空間、散熱、效率和重量等設計限制全都變成限制充電時所能傳送的電池容量,以及限制電池充電速度的因素。再清楚不過的一種做法,就是利用車外通用型DC充電器為各種車輛提供電力,如此便不需要將AC-DC轉換器放在車內(圖1)。
圖1 各種電動車充電選項
隨著各國開始出現大容量電池,許多前瞻性的概念開始萌芽,亦即將這些電源整合到我們日常的電力需求之中。有些概念考慮將這些需求結合到太陽能發電策略中,利用家庭和商業大樓內的再生能源為電動車充電,同時在發生斷電狀況時將其做為備用電力,或是用來緩解尖峰需求。這種Vehicle-to-Building(V2B)方式已在美國底特律市使用一批可雙向輸電的Fiat 500e電動車完成測試。
這個創意甚至還能加以延伸,考量全國的電力需求,將電力需求往上提升,更全面地轉移到再生能源搭配Vehicle-to-Grid(V2G)的實作。荷蘭與三菱汽車(Mitsubishi)合作,利用OUTLAND PHEV進行V2G的試驗,將家庭平均每日用電量儲存在車內。這樣的創意確實增加了充電解決方案的需求,因為它不只需要提供高效率的AC-DC轉換,還需要額外執行DC-AC轉換,以將電力回送到電網內(圖2)。
圖2 替代的充電方式
充電標準儘管同時反映V2B和V2G的需求,但對於如何精準實作到全國或國際上卻未有足夠的說明。其他選項似乎未能得到廣泛的支援,像是用充飽電的電池替換用完的電池。不過,這種解決方案在印度等特定市場較受到青睞,尤其是針對二輪和三輪車及巴士的解決方案。
感應式充電仍是解決一切問題的妙計,讓汽車能利用埋在停車場地底下的線圈,將電力傳送到車上的線圈來充電。雖然這種充電方式已經使用在行動手持裝置上,但對齊兩個線圈的過程中會產生耗損,還有需要傳送的電量,使得這種方法目前只能侷限在特定的使用案例。
複製加油便利性 快速DC充電架構不可少
如果要將內燃機車輛加油的便利性,複製到電動車使用者身上,充電站將需要提供大量電力。典型的22kW充電解決方案可提供AC充電,供應足夠行駛120分鐘200公里的電力,適合用在車主上班時能整天充電的汽車。但如果要將200公里的充電時間縮短到16分鐘,則需要靠150kW的DC充電站。甚至提高到350kW後,供應相同電量所需要的時間,將與現在進入加油站所需要的時間差不多,大約7分鐘。但要注意的是,要加快充電速度,汽車電池也必須支援此充電方式(圖3)。
圖3 充電系統的基本結構
快速DC充電器的終極目標,就是廣泛將架構標準化,包括輸出電壓的範圍和支援的電力傳送。輸入電力預期介於300Vac至400Vac,並透過AC-DC和DC-DC轉換器轉換為連接汽車所需要的DC電壓。另外,也需要實作資料傳輸通道,以提供關於汽車和電池充電狀態的資訊。汽車資訊和車主資料還可成為最終元件的一部分,作為用來處理付款作業的安全資料通道。
雖然目前多數的實作都限定在50kW左右,但目前所定義的仍為350kW高充電功率。電源連接器定義能容納未來所需要的電力汲取,支援最高1000Vdc電壓,200A電流。
針對家庭使用,電力汲取則受限於本地基礎設施。壁掛式機櫃充電器雖然可以供應兩相或三相電力,但無法支援22kW以上的功率。不過,針對原本便設計供大規模電動車充電的環境,像是停車場和高速公路休息站,可以預期將會有完整的充電停車位。10至30kV的中電壓隔離式變壓器能為高功率充電器供電,每一部可供應到最高350kW的功率,同時以全速為多輛汽車進行超快速充電。在變壓器隔離的情況下,除簡化電力電路,也能改善整體效率。
另一方面,充電站也會廣設在商場或購物中心的停車場。充電點的形態與大小將類似於一座加油機,尺寸大約可提供最高150kW的功率。不過,由於是用三相低電壓的電網連線,因此並非所有充電器都能同時以全功率運作(圖4)。
圖4 DC充電生態系統概覽
充電點本身通常會是壁掛式機櫃或充電樁(如上所述的一部直立裝置)。其實作方式包括從單一充電次單元,到日後可隨需升級為更高充電功率的多重次單元。
充電器次單元(經常遭誤解為模組)目前可提供AC轉DC的轉換,最高功率介於15kW至20kW,次單元經過堆疊,可提高充電樁供應的整體功率。
但隨著對加快充電速度的需求提高,趨勢開始轉為使用每部大小約50kW以上的次單元。次單元本身的結構結合了獨立元件或功率模組,主要取決於其想要達成的設計規格。
標準化建構基礎實現安全/充電通用化
汽車的能量來源轉型,衝擊到許多產業,將許多原本鮮少涉及汽車業或甚至完全無關的新廠商拉了進來。與半導體業關係久遠的汽車原始設備製造商(OEM)則為例外,他們的角色能為這個開發中市場的部分其他廠商提供連結。
如同現在的汽車OEM不會自己經營加油站,未來他們也不會將重心放在為電動車提供充電基礎設施,因為這是充電器製造商的工作,這些製造商已有相關的經驗,瞭解如何為類似應用開發電力管理解決方案。至於安裝與管理則交給充電點營運商,他們會設法選出最具能源效率和經過成本最佳化的解決方案;他們的後端系統將管理需求,預測更適當的能源價格,同時處理安全付款機制。最後一片拼圖是能源供應商,他們的支援是確保整個基礎設施專案能實現,確保電網將電力送到需求點的必備要素。
充電樁的標準化工作已經在進行中,目的是為了確保消費者能有一個安全、簡單且全面通用的方式來為其汽車充電。來自歐洲和美國的相關廠商(包括英飛凌)合作成立了CharIN e.V.協會,一個專為開發及推廣聯合充電系統(Combined Charging System, CCS)而設立的組織。他們的規格定義從充電順序和資料通訊,到實作的插頭類型等範圍。此外,也有一些類似的組織成立,在日本推廣CHAdeMO和在中國推廣GB/T等替代方案,另外像Tesla也有自家的專有系統。
CharIN標準可透過單一連接器同時支援AC和DC充電,已獲得國內和國際性標準機構的認證。其AC充電符合IEC 61851第1節和第22節的要求,DC充電則符合第1節和第23節的涵蓋範圍。在插頭和插座方面,則應參考IEC 62196第2部分關於Type 2 AC連接器和第3部分Combo 2 DC連接器(歐盟),以及第1部分Combo 1連接器(美國)的內容。
快速充電須考量多樣要素
電池充電可視為恆定電流應用的實作,不需要考量過載的情況。一般電池充電是在恆定電流(CC)模式下以¼C實作,其中的C定義電池在一小時內的充電或放電速率。當充電程序達到80%左右時,電流仍會保持固定,但電壓則持續穩定提高,直到達到電池的Vmax。一個200Ah電池組需要的時間大約是4小時,之後電池將改以恆定電壓(CV)模式充電。
快速充電需在前20分鐘用2C的速率為電池充電,後面的階段用1C充電10分鐘,最後則用½C繼續充4分鐘。一個200Ah的電池組可在34分鐘內達到80%電量,約等於300公里的行駛里程。只不過,DC快速充電還是存在許多限制。首先,它受限於所用的電池充電技術。除此之外,電池的配置、熱管理實作,以及電池芯的互連方式也都必須納入考量(圖5)。
圖5 典型的快速充電設定
在充電器方面,CharIN規格設想的最高恆定電流輸出在700Vdc下為500A,支援至最高920Vdc。但電池系統也必須另外建立一些機制,以應付快速充電所導致的衰退情況,並整合最高1000Vdc的隔離功能。最終解決方案的效率應該要達到95%以上,並在日後提升到98%。最後別忘了,300kW耗損1%的效率,等於耗損掉了3kW。此外,纜線在500A全負載下每公尺也會發生100W的功率耗損。
功率循環的影響與其他功率應用相較下偏低,熱循環對私人設備的影響微乎其微,甚至毫無影響,但對公用充電站的設計來說則是一大挑戰。例如,私家車在10至15年使用壽命內每年充電最多5,000次,而大眾運輸車輛(例如巴士)的充電器在15至20年使用壽命期間的充電次數則可能達到30,000次。
遵循兩大方法達到快速DC充電
高功率DC充電器的設計方式主要遵循兩種基本方法,一種是將輸入的三相AC電源轉換為可變的DC輸出,饋入DC-DC轉換器。充電器必須經過與車輛通訊,才能定義出精準的DC電壓;另一種方法是將輸入的AC電源轉換為固定的DC輸出,然後再經由DC-DC轉換器轉換為汽車所需要的電壓(圖6)。
圖6 兩種有潛力的高功率DC充電器方式的方塊圖
這兩種方法都同樣適用於本應用,沒有重大的優點或缺點。但與其將重心放在轉換方法上,最主要的考量還是在於實作如何將所需的散熱效果降到最低、提高功率密度,以及縮小整個系統尺寸。
高功率密度需要靠強制進氣散熱(現行的標準),但新一代充電解決方案正在尋找可行的水冷式解決方案。精簡型解決方案必然需要考慮更高的切換速度,也就是32kHz至100kHz之間的範圍,以縮小磁性元件的尺寸。
最簡單且符合成本效益的AC-DC轉換方法,就是使用二極體整流器。但其簡化設計讓設計人員只能視本地的三相供應電壓使用固定的輸出電壓,還有不理想的總諧波失真(THD)。雖然線路電流的諧波失真可透過實作多脈衝整流器來加以改善,但卻需要採用更複雜的變壓器和額外的整流二極體。
使用三相主動前端(AFE)則可解決THD的問題,其可以提供正弦形的輸入電流,同時供應可變DC輸出電壓至後續的輸出級。為減輕額外的複雜度,閘極驅動器需使用隔離式電源供應器,另外也需使用輸入濾波器,而這類拓撲已經過詳實的記錄和研究,並已通過考驗,是適合本應用的解決方案。
另一種雖然現行較少使用,但越來越受歡迎的選擇,則是Vienna整流器。這是一種三相三階的PWM整流器,只需要三個主動式開關,並具備雙重升壓型功率因子校正(PFC)(圖7)。可以控制輸出電壓,甚至在電力不平衡或其中一相中斷的情況下也能運作。這種整流器也很堅固耐用,即使控制電路故障,輸出或前端仍不會短路。與AFE相同,其輸入電流為正弦波,各種實作所顯示出來的功率因素最高可達到0.997,THD低於5%,效率達97%以上。
圖7 AC-DC轉換器的整流器與PFC選項
在DC-DC轉換級中,諧振拓撲因效率的緣故而較常被採用。在整體實作需要的情況下,也可在其中加入電氣隔離。此種設計可實現更高的功率密度並縮小體積,尤其在變壓器整合一次側電感器的應用中;零電壓切換(ZVS)能夠降低切換耗損,對提高整體系統效率有所幫助(圖8)。在電網隔離架構中,多重交錯式降壓轉換器是最適合的DC-DC拓撲選擇,其優點包括可跨相分享負載,減少漣波和濾波器的尺寸,但代價是需要的元件數量較多。
圖8 DC-DC轉換主要搭配串並聯LLC諧振轉換器實作
快速DC充電器實作方式
中國市場擁有目前最成熟的快速DC充電實作,普及率達80%(相較下,歐洲、中東及非洲為15%,美洲只有5%)。這裡15kW以下的解決方案最普遍,但預計2020年時20kW會成為最主要的次單元選項,另外到2023年也會出貨大量的30kW和超過60kW的單元。這反映出市場趨勢是往350kW的高功率充電發展。為此,電源方案供應商如英飛凌,開始發展各式矽解決方案,像是功率模組、閘極驅動器IC、微控制器解決方案等,也提供可靠的驗證解決方案和安全控制器,保護付款與系統安全性(圖9)。
圖9 英飛凌的DC電動車充電設計產品
建議採用的方法,取決於欲達到的總功率輸出目標,同時也會影響到次單元的拓撲和建構方式。針對30kW以下的壁掛式裝置和充電樁,建議採用獨立的功率裝置,至於350kW則有專用於實作的功率模組。介於50至150kW之間的應用,是否選擇獨立功率元件或功率模組,則從環境因素、空間和價格作決定。
30kW至150kW為常見解決方案
常見的做法是使用15kW至30kW的次單元建構快速充電器,再將其堆疊成150kW的電動車充電解決方案。採用獨立裝置的15至30kW次單元和充電器實作,則可選擇Vienna整流器來進行40kHz的PFC級切換(圖10)。
圖10 由獨立裝置製成的充電器典型拓撲
用於氣冷系統的三相、380V/50Hz電源,TRENCHSTOP 5 IGBT與CoolSiC肖特基二極體的結合,經過整合後會是很適合具成本考量之應用的解決方案。使用碳化矽(SiC)二極體,其效率比傳統Si二極體高出0.8%,支援的功率輸出也能多出80%。將IGBT換成600V CoolMOS P7 SJ MOSFET,則能改善0.5%的效率。
在DC-DC轉換器中,通常使用諧振轉換器來進行頻率最高達300kHz的切換,並依電池充電電壓供應200V至700V。其中600V CoolMOS CSFD,或用於30mΩ以下RDS(on)的600V CoolMOS CFD7...
開創功率轉換新局面 SiC MOSFET邁入主流市場
SiC提高功率轉換效能
眾半導體商因應此趨勢推出各種方案,例如英飛凌便展示了CoolSiC MOSFET系列的相應功能集以及搭配的驅動器IC,其支援入門級應用。例如,光電變頻器、不斷電系統(UPS)、驅動器、電池充電基礎設施以及能源儲存解決方案。
在未來,將有越來越多的功率電子應用無法僅倚賴矽(Si)裝置滿足目標需求。由於矽裝置的高動態損耗,因此藉由矽裝置提高功率密度、減少電路板空間、降低元件數量及系統成本,同時提高功率轉換效能,即成為一個相互矛盾的挑戰。為解決此問題,工程師們逐漸開始採用以碳化矽材料為基礎的功率半導體來部署解決方案。
SiC蕭特基二極體長期以來持續創新,像是英飛凌於2001年推出首批600V產品,並持續擴大包括650V與1200V電壓等級的產品組合,同時也開發並發表新世代產品,其單位晶片面積具有更高的電流處理能力,同時降低了功率損耗,目前已生產數億個SiC二極體晶片並供應至市場。
在這十多年來,諸如太陽能變頻器中的MPP追蹤或開關式電源供應器中的功率因數校正等應用中,使用Si IGBT加上SiC二極體或具有SiC二極體的超接面Si MOSFET已成為最先進的解決方案,可實現高轉換效率及高可靠度的系統。市場報告甚至強調SiC二極體正進入生產率的平原期。SiC技術中的量產技術、生產品質監控以及具有優異FIT率的現場追蹤記錄,為採用包含SiC MOSFET之產品策略奠定了下一步基礎。
SiC MOSFET/Si IGBT 效能大有優勢
SiC半導體材料中的電晶體功能,為整體電力供應鏈(從能源產生、傳輸及分配給消費者)的能源效率(以較少能源獲得更多能源)提供了更大的潛力。
讓我們仔細研究一下SiC MOSFET與Si IGBT的效能優勢。圖1顯示了先進的矽解決方案範例:如果目標為高效率與高功率密度,具有650V與1200V Si IGBT的3-Level T類拓撲的一個相位腳通常會用於三相系統,例如光電變頻器與UPS。採用此種解決方案,效率最高可達到20~25kHz的切換頻率。由於裝置電容較低、部分負載導通損耗較低,以及沒有關斷尾電流,因此1200V SiC MOSFET的電流損耗比1200V Si IGBT低約80%。在外部切換位置使用1200V SiC MOSFET可大幅提升效率,並在指定的框架尺寸中達到更高的輸出功率。
圖1 先進的矽解決方案範例
進一步提高切換頻率會導致矽基解決方案效率與最大輸出功率迅速降低,但SiC MOSFET的低切換損耗不會有此問題。透過此範例的證明,工作頻率高達72kHz的三倍仍帶來比24kHz運作之矽解決方案更高的效率。因此可縮減被動元件實體尺寸、減少冷卻作業,並達到更低的系統重量與成本。
另一個三相電力轉換範例是電動車的充電基礎設施。1200V SiC MOSFET可為DC-DC轉換級建構一個LLC全橋級,其中典型的矽解決方案倚賴650V Si超接面MOSFET,需要兩個串聯的LLC全橋來支援800V的DC鏈路。而四組SiC MOSFET加上驅動器IC即可取代八組Si超接面MOSFET加上驅動器IC,如圖2所示。除了零件數量減少及電路板空間縮減之外,還可以使效率達到最佳化。在每個導通狀態下,相較於Si解決方案中的四個切換位置,SiC MOSFET解決方案僅打開兩個切換位置。在快速電池充電中使用SiC...
滿足高功率轉換/小體積電源設計需求 晶片商啟動SiC軍備競賽
碳化矽(SiC)市場發展持續增溫。根據市調機構Yole Développement調查指出,全球SiC功率半導體市場將從2017年的3.02億美元,快速成長至2023年的13.99億美元,2017~2023年的市場規模年複合成長率(CAGR)為29%。其中,隨著汽車製造商未來5~10年內於主逆變器、車載充電器(OBC),以及直流-直流(DC-DC)轉換器等裝置皆陸續採用SiC功率半導體,汽車產業將成SiC市場加速成長的關鍵推手,特別是電動車款的應用。
SiC市場加速攀升 電動車成主要推手
電動車(EV)市場持續蓬勃發展,根據Frost&Sullivan研究顯示,全球EV銷售量將從2017年的120萬輛增加到2018年的160萬輛,並可望在2019年進一步上升至約200萬輛;特別是中國大陸地區,未來5至7年內將成為EV最大市場。為提升電動車整體效能,達到更好的電源轉換效率,在矽(Si)元件已被認為逐漸逼近性能上限之刻,車商、半導體業者開始轉往發展寬能隙半導體,而SiC具備高切換速度、高耐壓與低損耗特性,因而備受汽車產業青睞。
Yole化合物半導體技術和市場分析師Hong Lin表示,SiC功率半導體的普及率,取決於汽車製造商的導入;目前已有汽車業者在主逆變器、車載充電器和DC-DC轉換器中,採用SiC功率半導體。像是特斯拉(Tesla)便已在旗下Model 3電動車中使用SiC金屬氧化物半導體場效電晶體(MOSFET)元件,來降低導通和開關損耗。
同時,Yole預估2018年全球將會有超過20家的汽車業者,在OBC中使用SiC肖特基二極體(Schottky Diodes)或SiC MOSFET;未來SiC功率半導體在OBC市場中有望以CAGR 44%的速度成長至2023年。另外,Yole預估將有愈來愈多的汽車製造商會在主逆變器中採用SiC功率半導體,特別是中國車商,近幾年更是紛紛考慮使用SiC功率元件,因此,2017~2023年,SiC功率元件在主逆變器市場的CAGR,更可能高達108%。
羅姆(ROHM)半導體台灣設計中心主任工程師蘇建榮(圖1)指出,SiC剛開發時,容易遇上兩個挑戰,分別是Body Diode的信賴性問題,因為當Body Diode通電時,會造成MOS RDS(on)上升;另一個是在SiC的MOS Gate加上偏壓時,會造成Vth偏移。目前這兩個技術挑戰已獲得解決,因而降低SiC的應用難度,普及率也開始提高,像是上述提到電動車中的肖特基二極體、OBC、PFC,或者是壁掛/直立式的電動車充電樁,都已開始導入SiC。
圖1 羅姆半導體台灣設計中心主任工程師蘇建榮指出,SiC普及率開始提升,電動車更是SiC主要應用市場。
擴增產能/攜手VENTURI車隊 羅姆力拓SiC市場版圖
如上提到,汽車產業成為SiC市場攀升的關鍵推手,為此,各半導體廠也開始積極布局。例如羅姆便與FIA Formula E電動方程式賽車的VENTURI車隊合作,提供該公司旗下SiC功率模組,搭載於驅動車輛的核心裝置-變流器中,提升車輛性能。
據悉,羅姆於2017~2018第3季FIA Formula E電動方程式賽事中,已提供了二極體(SiC-SBD)於VENTURI車隊,而從第4季開始,將改為提供整合電晶體和二極體的全SiC功率元件。此一元件與尚未搭載SiC的變流器相比較,體積減少了43%、重量減少了6公斤,讓VENTURI車隊的車輛體積更小,重量更輕。
另一方面,因應SiC需求逐步攀升,該公司也決定在日本福岡縣的筑後工廠增建新廠房,以滿足日漸升高的SiC功率元件生產需求。據悉,該新廠房為地上3層建築,總建築面積約11,000㎡。目前正在進行相關細部設計,預計於2019年動工,並於2020年竣工完成。
科銳SiC MOSFET助陣 電動車傳動效率大增
另一方面,為提升電動汽車動力傳動系統性能,科銳(CREE)旗下公司Wolfspeed近日也宣布推出新款1200V SiC MOSFET系列,可實現高電壓功率轉換,提高電動汽車動力傳動系統效率,讓電動車行駛距離更長,同時能夠降低系統成本,為消費者提供更好的綜合性能。
Wolfspeed總經理Cengiz Balkas表示,該公司開發的SiC產品組合,能實現尺寸更小、重量更輕的系統,進而提高每次充電後的行駛里程,這將有效減少電動汽車和汽油車在成本和性能方面的差距,並使汽車供應商和生產商更容易打造電動汽車生態系統。
據悉,新推出的C3M 1200V SiC MOSFET可承受大電流,能在1200V電壓條件下實現目前較低的漏源電阻RDS(on)及開關損耗,並提供更高的品質因數,使得消費者在單次充電之後,能夠行駛更遠的距離。
科銳首席執行長Gregg Lowe指出,全球對於電動汽車的需求日益成長,幾乎所有汽車生產商都宣布在其產品家族中推出新型電動汽車平台,而該公司透過採用新型技術,例如Wolfspeed新型SiC MOSFET產品組合,加快電動汽車的普及。
搶攻電動車市場 英飛凌SiC肖特基二極體發功
除上述所提的羅姆和科銳之外,另一電源晶片大廠英飛凌(Infineon)也瞄準電動車市場,於近期發布首款車用SiC系列CoolSiC肖特基二極體,可用於目前和未來油電混合車和電動車中的OBC。
英飛凌車用高功率部門副總裁暨總經理Stephan...