Chamber光通訊
商業化應用全面開展 致茂力推5G應用量測方案
5G商轉如火如荼,5G服務與相關通訊設備已陸續出現在市場上,大舉推出的時間點預計將落在2020年,屆時不僅網路建設將大規模開展,支援5G的各種終端應用產品也將進軍市場。使得5G相關產品製造商將面臨截然不同的挑戰,如何大幅提升產品測試的效率,以趕上緊湊的產品上市時程計畫,將是5G供應鏈廠商必須克服的問題。
為此,致茂電子舉辦「2019 5G通訊量測應用研討會」,該公司總經理曾一士表示,2019年已經有14~15個國家推動5G商轉,2020年將持續增加。而除了5G,AI與IoT也是未來幾年重大的科技趨勢,這些技術發展與應用不啻是產業重心與商機。但相對之下,高傳輸速率、低延遲、高可靠度、功能安全性等的要求帶動元件、成品的測試挑戰與需求,為達成產品與技術效能全面提升的走向,測試的必要性也更被重視。
5G技術架構全面提升
5G網路全面改善4G系統的效能,工研院資通所新創長周勝鄰提到,5G主要透過無線電標準與網路規劃/建置來克服效能提升的技術挑戰。5G要求系統容量達4G的100~1000倍成長,其中透過大規模MIMO(Massive MIMO),以提升頻譜效率;開發高頻毫米波(mmWave),來取得更多可用頻段;超高密度網路(Ultra-Dense Networks, UDN)可以提升網路容量。
另外,5G的高可靠度/低延遲將帶動許多新興應用如:車聯網、智慧製造、智慧醫療、AR/VR等,許多過去未能落實的概念,在5G時代得以發展,小型基地台就會從強化網路覆蓋率的角色,轉變為擴增網路容量的任務,成為5G時代的組網主幹。
光通訊骨幹因應5G升級頻寬
而5G傳輸速率大幅提升,也帶動光通訊網路的發展,由於5G需要部署大量基地台,傳統的基地台功能也被拆分為RU(Radio Unit)、DU(Distribution Unit)、CU(Central Unit)三個主要單元,因應這些網路單元的布建與架構方式,致茂電子資深經理張敏宏(圖1)表示,光纖網路除了頻寬升級需求外,各式與無線接取單元搭配的光纖網路扮演重要的角色,包括RU與DU間的前傳網路(Fronthaul)、DU與CU間的中傳網路(Midhaul)、CU與核心網路間的後傳網路(Backhaul)都需要仰賴光通訊技術。
圖1 致茂電子資深經理張敏宏表示,光纖網路除了頻寬升級外,與無線接取單元搭配的光纖網路在5G時代將扮演重要的角色。
因應頻寬的成長需求,光通訊技術也推動改朝換代,尤其是高頻寬解決方案未來幾年將持續被導入,張敏宏表示,波長分波多工(Wavelength Division Multiplexing, WDM)應用將更為普遍,而已經發展相當成熟的不歸零(Non-Return-to-Zero, NRZ)編碼,將逐漸為可提供更高頻寬的四階脈衝振幅調變(Pulse Amplitude Modulation-4, PAM4)技術取代,核心骨幹網路頻寬將升級到400G,光通訊收發器(Transceiver)數量也將大幅成長。而在光收發器生產過程中,通常會在CoC(Chip on Carrier)階段進行燒機與光電特性量測,以確保光收發器品質與信賴性。
毫米波元件測試眉角多
5G導入高頻毫米波為一大技術亮點,但高頻電波特性帶來許多技術挑戰,致茂電子副總經理蔡譯慶(圖2)說明,4G射頻模組是由SiP(Silicon in Package)方式整合不同製程技術來製作功率放大器(PA)、低雜訊放大器(LNA)、濾波器(Filter)、開關(Switch)和被動元件等;5G毫米波射頻模組為維持號完整性,將走向高度整合,5G毫米波採用波束成形(Beamforming)技術,降低PA功率發射的限制與要求,5G天線模組也因為毫米波波長變短,模組得以微縮。
圖2 致茂電子副總經理蔡譯慶說明,5G導入高頻毫米波為一大技術亮點,但高頻電波特性帶來許多技術挑戰。
在RF元件的測試上,蔡譯慶指出,目前致茂就微型接觸力(Miniature Contact Force)、射頻屏蔽(RF Shielding)、整合性測試(All...