- Advertisement -
首頁 標籤 CbM

CbM

- Advertisment -

感測/無線連接/AI高度結合 智慧物聯網萬事俱備

隨著無線感測與感測器技術演進,物聯網的應用逐漸落地,其中設備維護、無線網路連接、深度感測及人工智慧(AI)運算需求,皆是物聯網發展的重要技術。工業4.0透過自動化狀態監測(CbM)的即時預警,能確保產線上的設備正常運作,以及大型公共建設與交通系統安全。Wi-SUN千點組網則確保遠距傳輸的穩定性跟速度,而3D深度感測實現各項環境辨識與虛擬實境應用。最終加上人工智慧的運算助力,感測器的精準度便能顯著提升。 MEMS感測器高穩定/低成本助攻CbM 工業4.0時代,工廠走向智慧化、自動化,生產線上的機械手臂應用越來越多,但設備存在長時間使用後失效的風險,因此需要感測器即時預警生產線上的突發狀況,避免造成巨大損失。茂宣專業技術經理王浚睿(圖1)說明,以晶圓廠為例,設備失效最嚴重的狀況,可能是產線停工所導致千萬元的損失。此外,CbM也能應用在公共建設與交通工具,如橋梁、飛機、火車系統中,能夠避免意外發生。 圖1  茂宣專業技術經理王浚睿表示,MEMS感測器採用CMOS製程,具有產品的一致性佳,對於低頻訊號的反應回饋良好 CbM的振動量測在感測器的選擇上,常見壓電式(Piezo)或微機電系統(MEMS)兩種類型。Piezo是市場上目前比較常見的震動感測器,使用陶瓷材料設計的壓電元件,只能手工量產,所以產出有限且成本較高,在低頻訊號方面的反應較為遲鈍,並容易受到環境溫度影響而出現飄移。相較Piezo,MEMS感測器採用CMOS製程,具有產品的一致性佳,對於低頻訊號的反應回饋良好,且雜訊強度(Noise Density)低、不容易因為溫度變化飄移等優勢,可以做為震動感測的選項之一。例如亞德諾半導體(ADI)的ADXL系列MEMS感測器除了噪聲比較低,還具備無線模組,使得感測器的布建更方便。 建置MEMS感測器時,需考慮位置、連接方式、馬達以外的機件、尺寸四大面向。王浚睿解釋,位置方面,尋找震動源之前,須確定量測的位置正確。如果測量的位置跟震動源距離太遠,或是傳導的時候震動幅度已經遞減,量到的訊號就不夠精確。同時,感測器連接的方式很多,找到正確的感測器型號來連接待測物是一大重點。各型號的感測器頻率響應曲線不同,須依照感測器標注的最大測量頻率選擇適合的類型。接著,確定在機械結構中欲測量的部分,才能確認震動所造成的異音為高頻或低頻訊號。最後,感測器的尺寸應取決於整體的配重。感測器不能比待測物重,以免影響待測物本身的震動狀況。 藉由CbM的應用,正確建置的MEMS感測器能隨時感知生產線上的震動狀況,並在出現異常現象時即時預警,避免設備問題而影響產線運作。此外,CbM為交通系統與大型公共建設維持安全性,促進工廠安全及城市安全的維護工作朝向自動化發展。 Wi-SUN具遠距傳輸/高穿透特性 智慧城市的應用與物聯網息息相關,未來物聯網將有非常多結點布建到城市中,海量的連線需求需要高覆蓋、穩定的通訊系統支援。濎通科技行銷經理呂沐勳(圖2)觀察物聯網通訊的痛點,遠端更新是必要的功能之一,因為軟體不斷更新,如果裝置不具備遠端更新的功能,就需要靠人力個別更新,不符合成本效益。電池方面,使用電池發電的裝置,需要考慮電池壽命,如果電池更換得太過頻繁便會拉高成本。同時,有些通訊協定由廠商自行開發,因此發展新應用時,必須諮詢原先制定協議定的公司,才能擴大發展相關應用,顯得限制重重。 圖2 濎通科技行銷經理呂沐勳認為,Wi-Sun技術適合應用在智慧城市、智慧能源等領域                   面對大範圍的無線網路傳輸需求,呂沐勳認為,Mesh組網的Wi-SUN技術可以解決前述的物聯網通訊痛點,適合應用在智慧城市、智慧能源等領域,如東京電力公司已全面使用Wi-SUN智慧電表,取代NB-IoT電表。Mesh組網具自適應的網路系統,可以自動組網,當環境中增加新的節點,Mesh組網會自動連線。另外,因為Mesh組網具備自動修復功能,如果網路中增加新的建築物,切斷原本的組網路徑,Mesh組網便會透過別的節點重新連接,維持連線順暢。 看好Wi-SUN的特性,濎通科技提出Wi-SUN通訊方案,採用RF及PLC的雙模融合技術,設計出整合線傳輸PLC跟無線傳輸的單晶片,運用演算法自動切換,在無線連線中斷時執行有線傳輸,有線傳輸中斷時則改用無線連接,達到同時滿足快速且穩定的長距離傳輸效果。 呂沐勳進一步說明,良好的物聯網通訊解決方案應具備三項特色,其一是無頻段授權/通訊費。以電信商營運的NB-IoT為例,在電信商的管理之下,每個節點都需要支付電信費用,導致傳輸成本較高。二則是具有長距離/高穿透/廣覆蓋,以及自動組網/自動修復功能,以濎通的VC7300為例,其優勢便在於可從地下2樓傳輸到地上6樓,滿足智慧電表的抄表需求。最後則是支援IPv6協定,才能讓每個節點都有身分認證,確保連線安全。 3D感測走入消費市場 感測技術與無線通訊的結合促使物聯網應用落地,而感測領域其中的一大趨勢即為3D感測。艾邁斯半導體台灣區總經理李定翰(圖3)提及,3D感測的應用越來越熱門,其發展主要聚焦在行動裝置、智慧家庭、工業自動化與自動駕駛四個面向。行動裝置上的應用演進最快,從過去以鏡頭為重心的設計,轉為加入距離測量、人臉辨識、虛擬實境遊戲、實境導航等功能。在安全驗證方面,智慧型手機及智慧建築的身分驗證不只透過指紋,更搭配臉部辨識提高安全性。同時隨著疫情出現戴口罩而難以辨識人臉的情境下,中國已研發出可以辨識戴口罩的臉部辨識系統。 圖3 艾邁斯半導體台灣區總經理李定翰指出,目前ToF的應用逐漸從iToF走向dToF 當3D感測應用在智慧家庭,以掃地機器人為例,過去的掃地機器人大多藉由放置虛擬牆或使用紅外線偵測決定移動路線。新一代放入ToF感測器的機器人,在清潔空間之前,會先行掃描環境,甚至搭配3D感測布建地圖,計算出最快速及省電的打掃路徑。如果將3D感測模組放入冰箱中,便能測量裡面的材積容量大小調整溫度,或者提出某些區塊的食物已經放超過一個禮拜的警示,達到省電與協助管理食材的效果。 李定翰表示,目前ToF的應用逐漸從iToF走向dToF。iToF的鏡頭有很多限制,在陽光下感測器很容易飽和,同時進行多工傳輸的路徑容易讓運算有問題。而dToF的量測則更為精確,可測量的距離也更遠。隨著電子元件及PVC的精確度、製程進步,dToF很快就會取代iToF,例如臉部辨識的變型,可以結合最新的dToF輔助演算。如線上購物廠商,為鞋子、衣服的尺寸數據建立資料庫,消費者只需要輸入身高、三圍,即可在網站上進行3D試穿模擬。 AI力助終端感測 除了3D感測,在AIoT市場,感測器的應用也開枝散葉,智慧醫療、智慧家庭、智慧城市、智慧農業,無處不見AI、IoT與感測器結合的應用。Arm應用工程總監徐達勇(圖4)舉例說明,醫療照護藉由生理感測預警疾病症狀;工業4.0藥品包裝產線,採用人工智慧視覺辨識,確認每個包裝內的藥品數量相同,或者透過震動感測確認工廠設備有無異常;農業中的蝦子養殖,運用AI影像辨識,確保蝦子的飼料不會因為過量而影響水質,也能隨時觀察蝦子的健康。 圖4 Arm應用工程總監徐達勇提及,Arm預估2020~2024年,每年AIoT裝置會有至少20%的成長 AI運算的位置分為雲端、本地及裝置三種,徐達勇指出,調查客戶希望AI運算的位置,53%的客戶青睞在裝置端運算,比較困難的特定需求再進行雲端運算。雲端運算雖然提供強大的算力,但是延遲問題、高頻寬需求、安全性跟隱私疑慮,促使多數客戶傾向選擇在裝置上運算。 雖然客戶偏好AI的終端運算,然而終端運算會面臨幾項挑戰。一是終端裝置的應用很重視使用者體驗,需要提高算力才能達到提高使用者體驗的目的。此外,終端裝置的設計重視成本控制,同時裝置電力來源多半是電池,因此低功耗也是設計重點。最後,不論選擇何種運算方式,隱私安全都是客戶重視的關鍵。對此,Arm近期設計的IP Cortex-M55便以加速AI運算為目標,特別加強DSP跟機器學習的運算能力。 如果採用通用處理器執行機器學習運算,相對的效能比較差,生產晶片的成本就會提高,所以此設計聚焦在DSP/機器學習的運算能力提升,並且提高處理器或能源的效率,達到降低功耗的目的。資安方面沿用Arm第8代MCU開始的TrustZone功能,處理器可以分成兩種執行模式,安全性比較敏感的內容就使用安全模式執行。 觀察AIoT的趨勢,徐達勇表示,Arm預估2020~2024年,每年AIoT裝置會有至少20%的成長,並且到年底之前,至少20%的終端裝置會具備機器學習功能。因此Arm專注AIoT的市場發展,IP瞄準AI終端裝置的效能需求設計,可望滿足未來不斷增加的市場需求。
0

落實工業機具狀態監測 建構強固振動量測要先行

機器人以及各種旋轉機具的狀態監測(CbM),像是渦輪、風扇、泵浦、馬達等機具,會記錄下機具健康與效能方面的即時資料,藉以進行針對性的預測維護,以及優化控制。在機器生命週期初期執行針對性預測維護能降低生產線停擺的風險,進而提高可靠度,省下可觀成本,以及提高廠區的生產力。 振動感測為狀態監測常用方案 工業機具的狀態監測可採用許多種類的感測器資料,包括如電性量測、振動、溫度、潤滑油品質、聲響等,以及像流量與壓力等製程量測數據。目前最常見的則是振動量測,因為振動是反映諸如不平衡以及軸承失效等各種機器問題最可靠的指標。本文專注探討運用振動感測,而這類量測方法同樣也適用於其他感測器的資料。 感測器資料從感測節點傳至主控制器或雲端的傳輸方式極大程度取決於應用。在許多應用中,本地端資料處理機制會建置在邊界節點上,整理後的資料接著會以無線方式傳送到網路閘道器,或透過手機網路直接傳送到雲端或分析伺服器。 在這些情況中,傳送資料量一般都很低,而且邊界節點由於使用電池供電,其傳送功率也比較低,反觀其他應用,傳送的則是未經處理的資料。 舉例來說,在匹配與融合多個感測器的資料之後,再將結果傳出並進行分析。一些應用還需要傳送未處理資料,這些資料用來執行即時控制。在這些應用中,較可行的資料傳輸解決方案則是有線介面。工業應用的狀態監測可採用優化型微機電系統(MEMS)訊號鏈加速計、低功耗微控制器,以及有線型iCoupler隔離介面,利用它們執行擷取、整理,以及可靠地傳遞機具的健康資料,並將這些從遠端CbM從屬設備取得的資料傳回到主控制器進行後續的分析。 經過長時間累積後,機器的健康資料即可用來建立軟體模型,藉此判斷機器行為的變化,以及維護機器的健康。在像是CNC數控加工機這類應用中,這類資料還可用來即時優化系統的效能。 實作有線CbM介面面臨的挑戰包括透過長纜線傳送資料時EMC強固性、在高傳輸率下資料完整性(即時CbM資料串流傳輸),以及通訊實體層/協定的不匹配等。本文將以ADI的有線介面解決方案為例,它們除了能協助客戶縮減設計週期與測試時間外,還能讓工業CbM解決方案加快上市時程。 有線CbM設計實作考量 在設計與部署有線式狀態監測解決方案方面,必須考量許多系統效能因素以及做出取捨。第一,在選擇適合MEMS加速計方面,必須考量需要量產的失效種類,才知道應該挑選具備什麼樣頻寬以及雜訊效能的MEMS元件,才能因應相關的系統需求。另外邊界節點的處理能力則須匹配選中的處理器,以確保能發揮最大的系統彈性。 第二,有線CbM系統的設計必須小心挑選適合的有線通訊協定以及實體層元件,以進行高速即時資料串流傳輸。建置有線介面方面,其中,需要審慎考量EMC效能、資料傳輸線路/連接器/以及透過線路傳送電力等因素。 選擇適合MEMS加速計 選擇適合MEMS振動感測器涉及多個層面的因素,首先是軸向數量。監控軸向的數量,通常和失效種類以及感測器裝設方位有關聯。如果失效分布在明顯的軸向,而且沿著該軸向有著明顯的傳遞路徑,那麼單軸向感測器就足夠應付需求。對於涉及分布在多個軸向上能量的失效,或是失效能量的傳遞路徑並不明顯的狀況,就適合採用三軸感測。 其次是失效種類。要監視的失效種類,對於挑選感測器有很大的影響。在這方面,感測器的雜訊密度以及頻寬都是重要的規格,因為它們決定了能可靠擷取到振動以及頻寬的範圍。以一個例子來看,低轉速機器的不平衡以及錯位(Misalignment)失效,需要一個低雜訊密度感測器,頻寬需求則相當低;若是齒輪失效的偵測,感測器需要的規格則是低雜訊密度以及高頻寬。 最後則是效能需求。除了失效種類,還必須瞭解CbM的效能需求。在建構精密預警機制方面,需要基本流量狀況的偵測警訊,藉以反映效能水準。這方面除了涉及到部署的分析機制以及演算法,同時也會影響到選用的感測器。感測器在頻寬、雜訊密度,以及線性度等方面的效能越高,分析功能就會越先進。 選擇適合的訊號處理 在訊號處理設計方面,考量因素則有三點。第一是加速計輸出,加速計的輸出端通常是類比或序列數位訊號介面,通常是SPI。類比輸出感測器則需要一個轉換階段,將資料轉換成數位格式,以及訊號調節步驟。包括採用分立ADC以及前置放大器調節,或是在微控制器內嵌入ADC。 第二為邊界節點處理要求,邊界節點必須執行一些基本的高速傅立葉轉換(FFT)或訊號處理演算法,才能降低資料鏈路與/或中央控制器/伺服器的工作負擔。 第三則是資料傳輸協定要求。ADC或感測器的輸出端通常是一個SPI介面。該介面本身並沒有提供任何涉及資料完整性檢查、時間標記(Time Stamping),以及混合不同感測器資料等方面的機制。其中一種有效的處理方法就是在邊界節點上以高階通訊協定將感測器資料裝入封包,然後再進行傳輸。 這種作法雖然會提高感測器介面的強固性以及彈性,然而,邊界節點的負擔也會隨之增加,因此須妥善處理以及封裝資料流。 將加速計輸出端移植到有線通訊匯流排 如先前所述,加速計的輸出通常為類比或序列數位訊號,大多為SPI規格。SPI輸出訊號可就地處理(促成協定的彈性)之後再加入到實體層介面,或直接移植到實體層。 SPI是一種非平衡式單端序列介面,用在短距離通訊上。想要直接將SPI移植到更長距離傳輸的實體層,則可採用RS-485線路的發送與接收元件。RS-485訊號為平衡的差動格式,其原本就擁有抗擾性,且經過長距離傳輸仍能維持強固性。 利用SPI介面在主控與從屬兩端進行較長距離的傳輸則會面臨許多挑戰。SPI本質上屬於同步式,由SPI主控端啟動一個時脈(SCLK)。而SPI資料線-主設備輸出/從設備輸入(MOSI)以及主設備輸入/從設備輸出(MISO)–則會與SLCK時脈同步化,這種機制在短距離內會可靠地達成。此外,SPI還有一種主動式低電平啟動(Low Enable)晶片選擇(CS)訊號,若有需要也能允許個別從屬端定址。 在經過長纜線傳輸後,SCLK訊號會延著纜線出現傳輸延遲,每100公尺會延遲500奈秒。在MOSI的資料傳輸方面,MOSI與SCLK經過纜線傳輸後產生的延遲會呈現一致。然而,由從屬端MISO到主控端的資料傳輸,產生的延遲則會是纜線傳輸延遲的兩倍。 想要回復主控與從屬兩端的同步性,其中一種作法是把時脈訊號由從屬端饋送到主控端,另一種方法,則是利用時脈相位偏移(Phase Shift)特性,在主控端補償纜線延遲。時脈的相位偏移必須匹配系統的延遲總和。 有線通訊實體層 在進行長距離通訊時,強固的實體層是不可或缺的要素。如先前提到,RS-485訊號擁有平衡、差動,以及天生的雜訊抗擾等特性。系統雜訊會等量耦合到RS-485雙絞線的兩條線路。 其中一個訊號發出另一個訊號的反相波,而耦合到RS-485匯流排通道的電磁場則會相互抵銷,因此整個系統的電磁干擾(EMI)便得以降低。RS-485還具備了一些額外關鍵的優點,使它適合用在CbM系統,其中包括: .更高的資料傳輸率,在較短線路中最高可達 50Mbps(低於100公尺)。 .以較低的資料傳輸率,在最長至1000公尺的纜線進行傳輸。 .全雙工/半雙工RS-485與RS-422多重發送/接收纜線對,可用最少零件轉換成雙向SPI至RS-485匯流排訊號。 .較寬的共模輸入範圍,允許主控端與從屬端之間存在對地電位差。 有線介面EMC效能 通訊網路經過冗長纜線的傳遞時容易遇到包括共模雜訊、對地電位差,以及高瞬時電壓等干擾的危害。長達100公尺的纜線容易受到各種導通與幅射雜訊源影響通訊的可靠度。 想要提高對這些雜訊源的免疫力,可採用iCoupler晶片級變壓器隔離技術。另外,共模瞬態抗擾度(CMTI)指的是隔離元件拒斥高電壓/高迴轉率(Slew Rate)雜訊瞬態,並維持無錯誤通訊的能力。訊號以及isoPower隔離元件提供25kV/μs的最低共模瞬態抗擾度,並能承受最高100kV/μs的瞬態電壓而不會永久閂鎖(Latch Up)或損壞。 在工廠自動化環境中,系統設計者通常無法控制通訊網路的電氣安裝工作。因此最好的作法是假設存在對地電位差。在動作控制系統方面,對地電位差經常多達數百伏特。一個RS-485通訊節點需要電氣隔離,並確保數據線路在可環境中能可靠工作。訊號與isoPower隔離元件能提供600V峰值(基本)的最高持續工作電壓或353V峰值(增強)電壓。對於存在相當大對地電位差的狀況下,基本隔離機制能促成可靠的通訊。而強化隔離機制則能保護操作人員在廠房環境不會觸電。 在有線通訊網路中,包括外露的連接器以及布線會暴露在嚴苛的瞬態電壓干擾下。系統層級IEC 61800-3標準針對可調整速度的電力驅動系統在抗擾性方面的要求,最低須達到±4kV接觸/±8kV空氣IEC 61000-4-2 ESD保護能力。 透過資料線傳遞幻象電源 主控端控制器與遠端CbM感測器節點之間的電力與數據線需要創新解決方案來降低布線成本。數據與供電整合到一個雙絞線對,不僅能大幅降低成本,還能造就出更小的印刷電路板(PCB)連接器解決方案,適合用在空間受限的邊界感測器節點。 透過一個電感-電容網路,可藉由雙絞線傳遞電源與資料。高頻率資料透過串聯電容耦合到數據線,這些串聯電容也會保護RS-485收發器不會受到直流匯流排電壓影響。電源則是透過連到數據線的電感接到主控端的控制器,而供電接著在CbM從屬端感測器節點透過一個電感進行濾波,而該節點位於纜線的終端處。 另外,纜線兩端的電感應妥善匹配以避免產生差模雜訊,而自我共振頻率應至少在10MHz以上,以避免和新一代振動量測系統的即時快衝模式相互干擾。請注意,電源與資料耦合解決方案應加入數據線,這些數據線中不應出現dc資料內容,像是RS-485介面的MOSI或MISO。 選擇適宜方案實現高效振動檢測 根據設計者的設計考量因素,圖1可提供幾種選擇途徑來協助建構強固的有線工業振動DVD-R/RW解決方案。在圖1中,選項2包含ADuM5401,該元件從資料匯流排擷取5伏直流電,並向ADcmXL3021提供3伏隔離供電。此外,ADuM5401還包含4個訊號隔離通道,這種組態適合3+1的SPI隔離。 圖1 強固/高度整合/有線MEMS加速計狀態監測解決方案的選項 圖1的選項3包含ADuM5402,這個元件類似ADuM5401。兩者之間的關鍵差異在於ADuM5402提供2個傳送以及2個接收數位隔離通道。 如先前所述,ADuM5401/ADuM5402能提高有線CbM介面的EMC抗擾力,保護ADcmXL3021使其不會受高電壓干擾,以及避免在RS-485纜線介面上出現對地電位差。 表1比較三種解決方案,以多項關鍵標準進行比較,包括設計彈性、電路板空間、解決方案成本、複雜度,以及EMC效能。將微控制器整合到CbM感測器節點雖然會提高設計彈性,但代價是會增加電路板空間以及額外的軟體複雜度。由於日後主控端CbM節點會配置處理器,故圖1中選項3基本上會是一個雙微控制器的系統,因此相較於主控端CbM節點的單微控制器配置,啟動運行的速度會比較慢。 表1 各種CbM選項的取捨比較 選項1與選項2雖然設計彈性比較低,但卻提供一條部署速度更快的途徑,因為它們能促成低複雜度、透明化的SPI連結RS-485鏈路。相較於選項3,選項1與選項2還提供邁向更小電路板的途徑,選項3的應用需要額外的電路板空間來容納微控制器以及相關的電路(像是時脈振盪器以及多個被動元件)。在選項2與選項3中加入iCoupler訊號與電源隔離機制,不僅增加占用的電路空間最小,還會提升EMC效能,勝過採用晶片內部保護機制搭配RS-485/RS-422收發器的作法。 (本文作者分別為ADI自動及能源事業部系統應用工程師和系統應用經理)
0

預防勝於治療 狀態監測確保設備健康

非規劃停機所造成的成本每小時可達數千甚至上萬美元。在2017年曾經進行的一項研究中,發現許多企業遇到停機時每小時平均成本高達200萬美元,非規劃停機造成的成本遠高於計畫性維護,因為機器必須下線進行診斷、訂購替換零件,然後才能進行維修。 機器在規格範圍內持續運轉,以及機器預期的剩餘壽命,都會受到各項變數所影響,包括如運轉時間、負載與運轉環境的變動,以及各種損壞事件等。狀態監測的目的,旨在找出這些影響因素的量化數據,以在需要立即注意時即時提供警訊,並精準預測需要介入的時機。 每部機器都不盡相同,每部機器老化的過程也不一致,而老化的過程通常緩慢且難以察覺。除非長期主動觀察細微變化的徵象,不然即使長時間下來也看不出老化的現象。之後有朝一日機器忽然失效,可能是災難性故障,意謂著機器必須離線進行維修。終端使用者希望針對即將發生的失效提前收到通知,藉以提前進行停機的計畫。他們也會觀察機器細微變化的各種徵象,這些因素可能影響類似紙張與金屬板材這類最終產品的品質。 各界需要更加提早觀測出機器磨耗,以及機器輸出品質的資訊,帶動對於更靈敏與更全面性感測的需求。另外,量測的種類也更加多元,包括溫度與振動等感測模態,如今也透過音響、馬達電流,以及電壓量測等方式提供輔助。這些量測系統匯整之後,即可對設備的狀態得到更全面的認知。因此每部機器上裝設著越來越多的量測通道。個別的量測通常需要妥善協調以顯示彼此的關係,像是x/y/z三個軸向的振動數據。而對於同步化的需求,也導致系統的複雜度更加提高。 量測節點日趨分散以及模態的多元化,意謂著以人力資源進行檢視與量測的方式已無法跟上實際作業的需要(圖1)。系統必須分散部署在廠房的各處或偏僻角落,並使用現有的有線基礎設施或無線網路,運用穩定安全的無線系統進行通訊。龐大且昂貴的感測器以及匯流傳輸設備必須做得更小、低價、省電,才適合裝設在這些環境。為此,許多新元件與子系統型態的新型精準解決方案,具備更高的整合度,讓系統廠商現在就能實現上述的感測功能。 圖1 使用壓電感測器是由掌上型裝置,以人工方式檢測設備。 資料擷取是狀態分析首要任務 想要儘可能提早察知機器耗損的徵兆,就等同於須擁有預見未來的能力。在狀態監測分析方面,方法就是觀察系統中各種最細微的變化,包括系統溫度、振動,或聲響等徵狀。想要感測到這些細微的變化,感測器與資料擷取系統必須能以最小偵測分辨率單位明確觀測到這些細微改變,包括在極高的振動或溫度下也能精準量測。為此訊號鏈必須具備極高的動態範圍,意謂著系統得擁有極低的雜訊,同時還能應付極大的變動。 舉例來說,要對往復式水泵偵測出機件磨損的徵兆,就必須能偵測出活塞死點不到十分之一毫米的磨損差異,而活塞的往復行程則達到300毫米。要確保能看到如此細微的變化,其條件則是系統雜訊必須低至少10倍。因此偵測水平必須達到1:300,000或109dB,須採用18位元或更精準的資料擷取系統。 另一項考量因素,是拓展出更多傳輸頻寬範圍。馬達軸以及許多齒輪系統的振動頻率相對較低,頻率相當接近軸轉速或僅是軸轉速的數倍。然而,系統中其他零件則擁有較高頻率特徵。為此,想要偵測擁有較高頻率特徵的零件因磨損產生的偏移,像是滾珠或油封軸承這類零件,感測機制必須在超過10kHz甚至80kHz的頻率下達到高解析度與高動態範圍(圖2)。 圖2 典型振動頻率特徵 感測系統規格必須包含高動態範圍(DR),以及極低的總諧波失真(THD),才能在系統振動模式(Profile)下解析出這些頻域特徵。在這些系統中,主要是運用最新精準型大頻寬三角積分(Σ-Δ)轉換器來執行類比至數位轉換步驟。這類極精準的類比至數位轉換器能滿足這些系統的關鍵需求。此類轉換器擁有優異的動態範圍以及THD(一般為+108dB DR到120dB THD),能在至少80kHz頻率下覆蓋dc直流頻寬,另外還具備許多簡單易用的特色,像是類比輸入端的預先充電緩衝器、整合式數位濾波器、跨元件同步支援多通道相位匹配,使得這些關鍵元件能用來建構最高效能的CbM資料擷取系統。 功率調整(Power Scaling)功能讓同一個實體硬體經調整後能支援特定功率上限的規範,針對整體功率匹配適合的動態範圍或頻寬。在直流以及較大頻寬條件下提供精準偵測,同一個平台的輸入通道能滿足包括溫度、形變,以及其他直流或低頻寬感測的需求,進而簡化整體條件監控系統的架構並降低複雜度,也就是單一平台即可支援所有種類的CbM感測器。 同步取樣確保相位關係保存 在CbM系統中,同步取樣用來確保各組時域資料之間的相位關係得以保存。舉例來說,兩個正交設定的振動感測器可用來偵測振動向量的方向以及振幅。在理想狀態下,相位會延著每個感測器輸入通道逐漸延遲,並應該和溫度變化相匹配。 對於CbM系統而言,設計上需要更多的彈性,方能因應取樣率、頻寬,或功耗擴充需求方面更寬廣的範圍,因此SAR ADC產品也很適宜。這些元件還提供高動態範圍與THD,吞吐量可達2 MSPS,並融入許多易用特色,除了降低訊號鏈的功耗以及訊號鏈的複雜度,還促成更高的通道密度。具備更高輸入阻抗模式的轉換器能擴展低功耗精準型放大器的範疇,這類放大器能直接驅動這些ADC,並達到最佳的效能。 為讓系統廠商針對更精小或分散式擷取節點可達到最高的通道密度,以及加快上市時程,半導體業者如ADI開發出新的訊號鏈μModule產品,可提供比以往更高的整合度。這些μModule元件結合資料擷取訊號鏈設計常用的關鍵零件,打造出小巧的積體電路(IC)形態。 μModule將類比與混合訊號元件的挑選、最佳化、以及配置等方面的設計負荷從設計者轉移到元件,藉以縮短整體設計時間以及系統除錯工作,最終則加快了上市時程。裝配在微型封裝內的μModule元件非常適合用在分散式少數量通道的微型CbM系統中,或更高通道數量的機架式系統(圖3)。 圖3 μModule組件的3D著色圖 MEMS感測器助力狀態監測執行 光是在訊號鏈的資料擷取部分提供高動態範圍、更廣的頻寬、更高的電源效率,以及更高的通道密度,只能解決CbM系統一部分的系統設計挑戰。傳統整合式電子壓電(IEPE)振動感測器龐大、笨重、昂貴,且供電線路的電壓通常比資料擷取系統還要高。一般而言,壓電式感測器採用24V的單一電源,消耗2毫安培的電流,封裝在金屬外殼內。由於感測器一般裝在資料擷取模組內,因此提高設備內部通道密度,就會衍生電源密度以及元件密度的問題。更糟的是,在以電池供電的無線擷取節點中,傳統壓電式振動感測器已不再能滿足這些設計鏈的需求。 MEMS微機電式振動與慣性感測器現在能滿足這些系統的需求。最新的高頻寬MEMS元件具備的雜訊與頻寬效能適合各種CbM應用,而且在標準的微型化表面黏著封裝就能達到這般的效能,同時功耗還比IEPE感測器低了20倍。這些MEMS感測器的小尺吋與功耗特色,讓業者能開發出超小型電池供電多軸系統,以用來執行永久與持續性狀態監測。 功耗與連結 感測機器的溫度、振動或噪音,之後將訊號轉換成數位資訊,這些都是監控作業的關鍵部分,但這些還不是完整的流程。要建構狀態監測系統,必須注意設計專案中所有類比、數位,以及混合訊號元件。資料擷取鏈要達到低雜訊,需要的不光只有低雜訊感測器以及類比至數位轉換元件,還包含低雜訊電源設計。系統要達到低功耗,電源元件必須有效率地從電池或線路汲取電力,而且不會增加設計的複雜度。 連結需求取決於應用環境。許多工業場所已有完備的布線,用來執行製程控制或現在的環境感測,像是溫度量測。然而,這類現存基礎設施大多數無法因應大規模狀態監測所涉及的龐大原始資料或資料傳輸率。 提高既有布線功能的其中一種方法,就是增加更多資料而且不影響現有的功能。舉例來說,HART技術可用來在常見4mA至20mA類比介面上加入數位格式的診斷資訊。類似的狀況,工業乙太網路能增加既有乙太網路布線的決定性以及即時控制力,反映在控制應用上就是延遲的表現,FFT資料所需的更高頻寬,以及允許每個鏈路設置多個節點。 另一種途徑就是無線傳輸資訊。在工業環境中,需要穩健且安全的無線聯網。最新的智慧網狀網路(Mesh)拓撲無線電產品,包含無線晶片,以及預先認證的電路板模組,即使置於充斥干擾雜訊且持續變動的射頻環境中,也能以低功耗執行通訊並達到超過99.9999%的資料可靠度。對於狀態監測而言,這意謂著失效或瞬變事件都能和host主控端進行通訊,並在最短的時間內做出因應作為(圖4)。 圖4 模組圖顯示典型精準資料擷取訊號鏈的子模組。 CbM角色將愈加吃重 狀態監測對於大型高資本設備是絕對必要的,包括像能源與油氣,在這類環境中,非規劃中的停機會直接影響對生產成本。另一方面,工廠扮演的角色越來越吃重,因為除了能主動執行機器維護之外,還能有一種方法來確保機器在正常運轉下能穩定一貫地生產產品。隨著這些監控功能的價值越來越顯著,這項技術將開始擴展到越來越多我們每天所運用的機器上,而不再是風力發電機或造紙廠的專利,未來,將會看到CbM廣泛地應用在火車、飛機、汽車,最終拓展到洗衣機甚至體積更小的家電中。 系統零件製造商未來必須整合感測器,或甚至整個通道都整合到零件之中。未來的馬達將配備振動與電流感測機制,而軸承與齒輪箱也是如此。未來許多自主性運行感測器節點會向行動裝置通報訊息,這些部署在車庫門上的裝置,能在車被塞在車庫內之前向車主發送警訊。 為因應在這些不同情境中持續增加的感測需求,許多設備製造商未來必須採取平台模式,運用少量的平台因應更多化的需求。量測通道必須支援不同的感測器類型,讓機架式設備能改成支援不同的感測器組合。在較小設備方面,系統必須能對不同供電條件進行調適,讓相同監控節點能用在洗衣機或電池供電工具。 狀態監測大幅減少災難性故障機率 狀態監測針對機器內部感測各項可量測的參數,藉以對機器的健康狀態取得量化數據。提高這些量測結果的精準與靈敏度,以及降低監控設備的尺寸/重量/耗電,即可讓工廠管理者將這類感測機制部署在廠房各角落。  現今的工作都配置健康監視器,就像健身追蹤裝置讓管理人員能對工廠運作有更深一層的掌握,隨時得知機器運轉的每一分鐘變化,並根據這類資訊及早做出有根據的決策。提前排定維護工作,並且僅對有需要維護的機器進行保養將能大幅降低維護成本,而技術人員在下班後的出勤以及待命成本,則能降低至零。  此外,由於工作維持在更嚴密控管的狀態,資本設備成本也能因此降低。早期偵測與替換已磨耗的零件,有助維護機器的整體健康。嚴密監視能減少災難性故障的發生機率。設備的壽命也得以延長,並持續維持到壽命終止。 工廠最終產品的生產成本得以降低。在掌握機器健康狀況下,機器的容錯性(Tolerance)即能維持在可控制的範圍內。最終產品各批次的輸出品質也更加穩定。當機器發生狀況或突然停擺的次數降低時,產品重工與廢料也會隨之減少。 (本文作者為ADI資深應用工程師)
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -