- Advertisement -
首頁 標籤 BEV

BEV

- Advertisment -

車載電氣系統超前部署 48V輕油電擁抱新應用

48V技術為了遵循CO2規格,可實現再生煞車及中間能源儲存等功能,之後還能針對傳統燃燒引擎提供電氣支援,不過在未來限值方面,似乎無法重現相同效益,因此許多汽車製造商都以HV-BEV為發展方向。圖1顯示在遵循未來限值的情況下,電動車市占率可能的發展情形。這說明為何各界通常將48V車輛電氣系統視為銜接技術。 圖1 ICE、48V輕油電混合車及電動車在遵循未來限值的情況下,可能的市占率發展示意圖 就技術觀點而言,本地零排放的純電動車顯然是理想解決方案,必須依此進行開發及推廣。不過是否要完全仰賴HV電動車,則成為各界爭論的話題。其中的風險在於燃料電池或CO2中和合成燃料等充滿潛力的技術,其開發工作可能會因此受到影響,導致喪失潛力十足的關鍵技術。此外如果全球改為使用純電動車,在原料生產及能源產生方面,還無法達到CO2中和的境界,特別是能源組合及HV電池的生產及回收問題,可能對碳足跡造成負面影響。其中的決定性因素,將是實作電動車技術在未來實現CO2中和目標的時間,以及48V車輛電氣系統如何為此提供支援。因此以下主要將探討48V車輛電氣系統是否只能作為銜接技術,以及是否具有進一步的發展潛力。 48V架構/應用逐步成市場矚目焦點 動力傳動系統有各種電機(EM)整合選項(P0至P5)。連接式燃燒引擎的「增壓」及「動能回收」,以及分離式燃燒引擎的「滑行」等基本功能,可在所有組態中實現,其中分離運作時必須使用自動啟動離合器。有別於受曲柄軸速度影響的P0及P1組態,P2至P5組態的共同點,就是可在內燃機引擎分離時回收煞車動能,並在48V系統的效能範圍內實現純電動駕駛。P4及P5架構也能以48V系統為基礎實現全輪駕駛功能。 不論驅動時使用的是HV-BEV、燃料電池或合成燃料,其他裝置的48V電壓位準都比12V更節能,在車輛中的安裝及運作也比HV更簡單,具有最佳化的可能性。視驅動概念而定,圖2顯示可能的48V應用,例如2~4kW的電動渦輪增壓器(eTurbo)、4~5kW的電動空調壓縮機(eA/C)、1~5kW的電動催化劑加熱(eCAT)、PTC輔助加熱器及擋風玻璃除冰等電動加熱器、1~5kW的電動驅動及滾動穩定(ERC)、最高1kW的泵及風扇,以及其他需要高電源密度及/或連續使用的應用。目前採用P2-P4組態的第二代輕油電混合車,正以48V為發展方向開發前述應用,此外也在HV-BEV作為第三電壓位準。 圖2 搭載48V輔助裝置的雙電壓車輛電氣系統示意圖 如果再稍微進一步探討都會行動商業部門的未來發展,或是所謂的「公共運輸行動服務(MaaS)」整體概念,就能為48V技術開創更多應用機會。相較於HV-BEV目前所需因應的極長範圍(>400km)及持續縮短充電時間等需求,48V技術的主要焦點為成本、電池重量、隔離保護,以及2km至20km的短距離行駛。有足夠時間在工作期間、整夜或類似期間進行充電,視車輛基礎設施及停車情形而定。對此項需求而言,計算顯示30kW驅動足以讓小型都會車完成都會及陸上的標準週期。此外,48V BEV動力傳動系統的成本,在此運作週期中約比HV400V BEV動力傳動系統便宜25%。目前市面上已經有負載最高1,000kg的商用車採用48V BEV,而採用48V BEV的摩托車及電動機車也在市場上站穩腳步,部分車款甚至採用可更換電池。以上所有實作都能採用已開發或預定開發的輕油電混合車應用,例如含電池管理系統(BMS)的電池、變頻器、DC/DC轉換器及輔助設備。 MaaS如何持續發展仍是問題所在。即使是傳統汽車製造商,目前也重新調整定位,並擬定策略轉型為MaaS供應商,定義全新的生態系統。這類車款因應完整行動力範圍的問題,除了可讓數人搭乘的小型都會車外,也有類似於EasyMile的「接駁POD」,提供12位乘客的運輸能力,並以類似於巴士的「人員移動裝置」及「貨物移動裝置」作為最後一哩服務。前述車款由於重量高於小型都會車,因此需要更高的電源密度。這可能讓48V不僅用於傳統動力傳動系統及輔助裝置,也將用於轉向、煞車及駕駛穩定性等項目,此外也可能用於輪轂馬達。類似應用也出現在卡車、農業、營造機械、堆高機、特殊車輛及航空市場。 即使前述應用只有部分獲得實作,且未來發展仍有很長一段路要走,但這有可能大幅延長48V的生命週期。 48V架構巧搭車載元件精準控制 48V車輛電氣系統的半導體,主要用於控制電動馬達、配電變頻器或向輔助裝置供電,還以DC/DC轉換器連結48V及12V電氣系統層級。其中的對應元件包括感測器、微控制器、電源供應器、通訊及驅動器IC。 圖3顯示控制啟動器-交流發電機的半導體基本配置;啟動器-交流發電機是48V車輛電氣系統的關鍵元件。為了向微控制器供電,因此將系統電壓(48V)降低至微控制器及其他IC的一般程度。這是供電IC(安全系統供電)的基本功能,也可在功能安全領域執行其他作業。微控制器可實現電動馬達的場導向控制,以及在交流發電機運作時控制勵磁機繞組。微控制器為此實作複雜的計時器單元,並透過各種通訊匯流排(例如CAN)與車輛的其他控制單元通訊。 圖3 48V微型混合系統搭配主要半導體元件的方塊圖 如果使用適當的感測器,電動馬達轉子的轉子位置及旋轉速度,以及目前通過變頻器的電流,就可接受量測並傳輸至微控制器。智慧型感測器IC已經可以在內部處理量測資料,並透過感測器匯流排以數值方式將此項資料提供給微控制器。為了精準控制馬達,也必須將個別馬達相位的電流傳輸至微控制器,因此會在變頻器使用分流電阻器,或使用磁場感測器判定電流。 低損耗MOSFET通常在48V車輛電氣系統作為功率級IC,大多是以專屬的三相驅動器控制及監控,並可於緊急狀態時切換為安全狀態。除了馬達驅動器IC以外,其他重要元件還包括高效能閘極驅動器IC,可搭配MOSFET提供高度可靠的電池開關或安全開關,因應48V/12V隔離需求。48V車輛電氣系統以DC/DC轉換器與12V車輛電氣系統電氣耦合。 48V系統需慎選應用 半導體商如英飛凌(Infineon)為48V系統提供完整的晶片組系統解決方案,其中涵蓋穩壓器、收發器、感測器、微控制器、智慧型電源驅動器,乃至於電阻較低的MOSFET。 AURIX微控制器系列可謂成功,特別是動力傳動系統領域,不過也能因應其他領域需求,例如安全或駕駛輔助系統。同時最新一代AURIX TC3xx產品(40nm搭配嵌入式快閃記憶體)也正在生產,提供高效能及高效設計的所有要素。這樣設計人員就可選擇各式各樣的可擴充記憶體容量、周邊裝置功能、頻率、溫度及封裝選項。AURIXTC3xx系列採用多核心架構,包含六個獨立運作的32位元TriCore處理器核心,運算效能遠超過前代產品。該微控制器結合即時功能、資料安全及功能安全,能夠滿足最高ASIL-D的ISO 26262系統需求。 AURIX與TLF35584安全供電裝置是良好組合。外部安全裝置不僅提供電力,也能監控供電及微控制器的功能安全(例如看門狗),有時也負責在發生安全相關故障事件時,將系統切換為安全狀態(失效安全)。如此可提高系統可用性,同時也能個別設定微控制器的錯誤回應。48V系統的其他重要通訊及電源元件為隔離CAN收發器及橋接驅動器IC。 48V應用對80V及100V MOSFET具有高度需求,用於啟動器-交流發電機(皮帶驅動或整合式)、DC/DC轉換器或電池主開關等應用。而英飛凌OptiMOS5系列提供可擴充的低導通電阻器(最低1.2mΩ)產品組合及多種封裝,例如新型TOLL(TO無鉛)、TOLG(HSOG-8)、TOLT(頂端冷卻提供高效能)、裸晶及晶片嵌入。 同時,48V系統也需要精準強大的感測器,感測BLDC馬達的轉子位置,以及用於量測電流。基本上感測器占用空間應越小越好,具備低損耗、彈性及符合成本效益等特性,並在完整的服務壽命期間提供高度精準、強大及安全的運作。例如霍爾型電流感測器XENSIV TLI4971,是英飛凌新系列「無核心」電流感測器的首款產品,可因應前述所有需求,量測電流最高可達120A,經校正後可供貨使用。 晶片嵌入技術降元件/接合複雜度 如英飛凌與Schweizer Electronic AG也合作開發功率MOSFET晶片嵌入技術(圖4)。這項技術可提升最高60%的48V系統效能,同時降低元件及接合技術的複雜度。晶片嵌入技術的MOSFET,並不像之前一樣焊接至印刷電路板,而是直接整合,也就是所謂的標準單元,其採用銅製導線架的MOSFET裸晶。其中提供的相關熱能及電氣優勢,可大幅提升電源密度,同時也更為可靠,特別是在與陶瓷模組比較的情況下。這樣開發人員就能提升48V系統效能,或使其更具成本效益。例如整合式48V啟動器-交流發電機扮演重要角色,讓輕油電混合車排放的CO2比傳統傳動動力系統減少15%。 圖4 使用晶片嵌入可進一步提升35%的電源密度 依據本文所述背景及應用範例,針對車用48V車輛電氣系統電壓技術進一步投資及系統最佳化,無疑為合理作法。 (本文作者皆任職於英飛凌,Dusan Graovac為汽車系統工程部門總監暨全球負責人;Christoph Schulz-Linkholt為配電部門首席系統架構師;Thomas Blasius任職於汽車車體系統行銷部門)
0

節能減碳無可妥協 電動車系統效能大躍進

車輛CO2排放法規並不新鮮,多年來一直由政府車輛監理機構實施。但最近的各國的目標更為提升,也為汽車電氣化趨勢更添動力。 中國身為全球最大的汽車市場,最近承諾禁止石化燃料汽車,挪威希望2025年銷售的所有乘用車都是零排放車輛,荷蘭則設定了2025年銷售的乘用車中50%需是零排放車輛的較低目標。印度正在推動到2030年只銷售電動車,而這可能只是我們將在全世界看到的法規的開始。從圖1可以看出,目前歐盟CO2排放目標將在2020年中實現,預計今後的排放限制將按照趨勢繼續下去。這些目標對內燃機(Internal Combustion Engine, ICE)的設計形成挑戰,如果沒有電動傳動系統元件作為車輛的混合動力或替代非石化燃料來源的貢獻,就無法實現這些挑戰。 圖1 歐美日汽車排碳標準發展趨勢 空氣品質惡化催生電動車商機 但挑戰不僅僅是石化燃料的消費和由此產生的二氧化碳排放而已。直接注射為基礎的內燃機(如柴油和高性能汽油發動機)產生的氮氧化物排放和顆粒物都是攸關健康的問題。這在都市中是不被接受的,導致相關法規愈趨嚴格-倫敦和巴黎等大城市正在禁止車輛進入市中心,而中國城市則透過日期限制車輛的使用。 車輛電氣化迫在眉睫,但市場將以多快的速度採用?(圖2)匯整了2050年以前車輛發展趨勢,ICE的比重將逐年減少,例如在2032年,50%的車輛將有電動馬達協助傳動系統。不過,燃油車輛要到2045年市占率才會低於50%。當然,未來道路上混合動力或電動車的確切數量將取決於許多經濟和社會因素,例如: 圖2 2015~2050年車輛發展趨勢 資料來源:Strategy Analytics、Evercore、NXP CMI .汽油和柴油價格與電力價格比較。 .技術進步-規模經濟、電池成本效益提升、電池化學性能的改善以提高能量密度(範圍)、充電基礎設施的普及。 .越來越令人關切的問題:環境及氣候變化。 .消費者行為和對車輛擁有權的態度以及電動汽車技術接受度。 .關於燃油經濟性、二氧化碳排放和污染的法規的態度。 從圖2中還可以看到,有不同形式的電動汽車,從輕混合動力(Mild Hybrid, MHEV)到全混合動力(Full Hybrid EV, FHEV)和插電式混合動力電動汽車(Plug-in Hybrid EV, PHEV)到純電池電動汽車(Pure Battery EV, BEV)。未來每輛車,至少有一個電動機,協助燃油車。不出意外的話,隨著電力行駛的比重持續提升,二氧化碳減排效果將越來越明顯。 油電混合車發展迅速 傳統的ICE需要在寬鬆的駕駛條件下行駛。因此,在某些領域,特別是低速度/高扭力的效率受到影響。電動機是ICE的好夥伴,因為它們在低速時輸出最大扭力,這意味著ICE可以根據更適合的條件進行優化。 第一輛混合動力汽車是FHEV車型。由豐田普銳斯(Toyota Prius),於1997年首次推出,目前仍是銷量最高的混合動力汽車。自普銳斯問世以來,已經取得了許多進步,最顯著的是PHEV,其中增加了外掛程式功能為電池充電。在純電模式下,PHEV僅適用於短距離,通常為20~30公里。FHEV和PHEV往往從類似的電壓水準運行,約為400V(圖3)。 圖3 不同類型車輛的電動化程度 最近的FHEV和PHEV車輛有兩個電動機,一個是針對電池的剎車動能回收和充電而優化的,另一個是針對扭力和功率進行優化以帶動車輛。然而,由於電機在低速時非常強大,ICE可以在容量上縮小規模,也可以使用更省油的控制策略,比如Atkinson迴圈。在這種情況下,當活塞向上移動壓縮時,進氣閥保持打開時間更長,這會減少活塞向上移動的摩擦,使發動機效率更高,但使其變慢。另一種方法是REEV它有一個小ICE來為電池充電,而不是驅動車輪。 48V系統提升車輛效能 最近的一個創新以取代FHEV的是48V MHEV。這些基於ICE動力總成補充及一個中型鋰離子電池和一個可逆的48V電動機。其目的是支援低速加速,並在煞車時給電池充電。與傳統的12V系統相較,48V系統滿足了以更低的成本和體積,提供更多電力需求。在高壓混合動力汽車中可減少二氧化碳排放量近20~30%(CO2/km)的情況下,48V MHEV據稱可減少10~20%。因此,MHEV以20~30%的成本帶來了PHEV二氧化碳減排效益的70%。此外,48V系統可以很容易地整合到現有的車輛動力總成和架構。 48V系統帶來的第二個好處是能夠透過將機械負載轉換為48V電源的電氣負載,減少內燃機的負載,而減少二氧化碳排放。需要更高功率不間斷運行的應用最適合,如空調壓縮機、電子渦輪增壓、主動懸吊和動力轉向。與PHEV和FEV中使用的高壓系統相比,另一優勢是不需要特殊的隔離和保護(圖4)。 圖4 48V系統於車輛中運作概況 BEV將大約60%的電能從電網轉換為車輪上的電能。傳統汽油車輛只將儲存能量的20%轉化為車輛動力之前,這聽起來並不是很有效。為了提高消費者對電動車的認識,消除大眾採用的障礙,增加電池容量是實現這一目標的方法之一,但這也增加了重量、降低了效率。業界需要考慮其他系統方面的問題,如: .減少電力驅動系統的損耗-儘管比ICE更有效率,但透過電動傳動系統仍有16%的能量損失。 .增加電車動能回收的使用-當剎車,車輛的慣性轉動電動發電機,產生電力,然後儲存在電池。 .減少充電損耗-當充電的電池,能量損失轉換交流電轉換到直流使用電池,以及在克服電池的充電阻力。 提升電動車效能各顯神通 為了提高電動傳動系統的效率,車廠不斷研究發展電機的科學及其在電動汽車上的應用。例如,BMW i3採用革命性的混合同步永磁磁阻電機來減少問題,同時在較高的速度範圍內提供高功率的技術發展。電機的速度越來越快,而在最有效的地方運行電機的需要,控制方法也越來越先進,涉及的數學模型越來越多。 多相電機的主題也在重新驗證,趨勢是六或更高的相位元數目。無論是純六相方法或雙工三相位設置,機械安裝與彼此固定的轉移。使用多相電機,每個相位的電流更小,因此可以調整元件的尺寸,再加上減少扭矩紋波,而有可能優化直流電容器的尺寸,並改善電池波動,最終可能改進範圍。多相控制的另一個好處是冗餘,因為即使在元件發生故障的情況下,操作也可以在較低的級別上繼續進行。 預測模型控制技術可用於利用卡爾曼濾波(Kalman Filtering)或狀態空間建模(State Space Modelling)來提高ICE或電動機的暫態效率。但另一種提高傳動系統效率和整體車輛效率的方法是更完善地決定在旅途的各個階段使用什麼扭力源。混合動力控制單元(Hybrid...
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -