電網
Moxa直指電網資安危機 應掌握電力通訊樞紐網路安全
CYBERSEC 2020台灣資安大會於8月12日落幕,現場超過250個品牌參展且參加人數超過6,000名。其中,Moxa四零四科技獲邀以「智慧化浪潮下的電網安全防護」為主題,與大會合作於台灣資安館展出,展示電力關鍵設備的資安方案,確保監控系統正常運作、掌握發電與相關設備營運狀態,避免駭客攻擊癱瘓系統而造成大規模工業或民用電力斷電災情。
國際上在2020年爆發的資安事件,針對製造業與民生基礎建設而來,因為攻擊成功能造成經濟損失並且造成大規模的災情引起矚目,成為駭客眼中的指標灘頭堡。其中傳統電力為了確保輸、配電效率,從發電端至用電端必須經過升、降壓的流程,因此擔任此要角的變電站成為了重要電網樞紐,而隨著智能電網的建置過程,也提高受到潛在攻擊的可能。
然而,要為工業網路打造資安方案並非易事,礙於現行系統陳舊無法更新,又或是安全更新作業將迫使系統停擺,造成停電影響民眾生活更甚經濟損失,皆非營運所允許。此外,由於電力系統使用專用的通訊協定,無法透過市場既有產品把關,此時使用產業專屬的深度封包檢測(DPI)技術,用以避免網路威脅和攻擊影響系統運作將更為有效。
Moxa此次展出解決方案包含次世代工業入侵預防系統(IPS)EtherCatch IEC-G102-BP系列、安全儀表板控制台(SDC)安全管理平台與電力專用的網路交換機PT-G7828系列。其中體積輕巧的IPS可偵測網路流量,在連接到安全儀表板控制台後,網管和操作人員可透過同一管理平台管理並監控所有的IPS,透過此中央管理平台,將可遠端完成各種設備的故障排除並記錄活動。而電力專用的PT-G7828網路交換機則具備檢核電力封包的能力,可偵測異常的GOOSE封包。
三合一電源架構實現高效充電 太陽能電動車前景可期
在印度標準局(BIS)、印度汽車研究協會(ARAI)、能源效率服務有限公司(EESL)等組織的協助下;印度政府已公布充電站的技術規格,此外AC-001、DC-001等原始標準也已經完成開發,並在特定地點部署充電站;除了低功耗AC和DC-001之外,最新規範也要求充電站必須配備多種規格的充電器,也就是AC Type 2、CCS和CHADEMO。不過這些系統完全仰賴電網供電,會因主要都會和半都會地區建物的供給而受限,而且電網是否準備充分足以應付這些額外負擔,也都還是問題。
而這就是太陽能與儲存裝置可以切入的領域,不但可補足電網不足,還能在全國各處可行地點獨立作業。所幸印度已成功部署太陽能,且因地理條件,太陽能資源十分充足。一次性的安裝與資本支出可順利運轉至少20到25年,投入的資金只需短短幾年即可回收,之後的能源輸入便都形同免費。
接下來將介紹一套可行的實作方法,來運用、儲存太陽能並將其應用於電動車的充電;本文還會略為提到能源的運用和儲存方法、分散式電池管理、能源轉換與連結,都是模組化、可擴充之太陽能驅動電動車充電站的基本要素。
圖1為常見由太陽能驅動之電動車充電站實作的配置圖,主要元素均可一目了然。
圖1 太陽能電動車充電站的功能方塊
至於使用者的部分,基本上為終端使用者會用到的功能。資訊的交換和使用者互動都是在這裡進行,通常包含一個具備觸控感測功能的TFT螢幕、供驗證或支付用的NFC讀卡機,有時或許還有藍牙介面以提供更先進的功能;車輛可實體連接任何一種輸出埠─供小型車和電動三輪車使用的AC慢充、特定等級車輛的AC快充,以及DC快充。使用者必須驗證自己的身分、設定偏好的充電方式,並且等到充電完畢。不過越深入其後的功能越複雜,因為都由中央控制器所控制和監控,所以會牽涉到許多不同的模組。
三供電來源共構能源管理系統
這套系統有三種供電來源。首先最重要的就是太陽能板,規模分析並不在本文討論範疇內,但一般來說每小時最少要有數千瓦(Kilowatt)。太陽能板的額定輻照度通常在每平方公尺150W。太陽能板饋給的對象為最大功率點追蹤(MPPT)模組,這是一種直流對直流(DC-DC)的功率轉換器,內部可執行最大功率點追蹤運算法。一般來說這些裝置效率都非常高,電效率超過98%,其通常是多相的交錯式降壓或降升壓轉換器,輸入和輸出端都只要幾百瓦就能運轉。裝置可以隔離也可以不要,但因為法規或安全因素,大部分系統都會進行電氣隔離。它的輸出對象則是一個通用的直流匯流排,可從這裡將下游能源提供給負載,而系統可採類比、完全數位化,或混合類比與數位控制。
第二種來源是電網,其並非必要供電來源,因為目的是使太陽能的利用最大化。不過在供電斷斷續續,或日照不足以提供全年或特定季節運轉的地區,電網就有助於滿足需求,因為系統基本上是一種太陽能儲存裝置,因此也可以利用系統本身在尖峰時刻補足電網之不足,或利用雙向的併網逆變器,擔任太陽能發電場的角色。若有適當政策將太陽能發電場或自用電廠所產生的電力輸出給電網,並採用淨計量電價的模式,就同時可以達到兩用效果。
第三種來源,同時也是接收/儲存點,則是電池。最近的趨勢是利用電池續航力高的鋰電池來快速充電,放電深度與容積效率都非常高,也可以將電池放在地底下以節省建物空間。這些鋰電池組件會以適當的串並聯組合放置,並分為好幾個組列。
電池的末端有一個接線盒,以及同時扮演監督者角色的終止裝置。每個電池都有一個資料埠,通常為CAN或RS485,都以菊環鏈模式輸出到終止裝置,終止裝置就能從最頂層了解每一個電池、組列或整個蓄電池組的健康狀態─這基本上是一種資料集中器和交換裝置,讓電池組件連接或中斷電路。此外,其還能和中央控制進行通訊,決定電池要充電還是放電。
圖2很清楚描繪出電源系統的架構,這是一種模組化的系統,可擴充到適當規模,模組通常都可擴充,每個3~5kW且搭配通訊匯排流,多半是CAN或MODBUS/RS485。中央控制器隨時都可以根據功能需求來配置模組—無論是充電管理、負載管理或診斷檢查。中央控制器內部經過布建可偵測能源使用狀況,基本上就是每小時消耗、儲存和產生/輸出多少kW的電力;同時還能與工業標準的電度表通訊,達到計費、費率設定等目的。
圖2 後段的能源系統架構
SiC提升電源轉換功率密度/效率
DC-DC轉換器模組接收DC匯流排的輸出。依照連結的車輛種類,還有與車輛電池管理系統規定電壓和電流相關需求,中央控制器會將DC-DC轉換器配置到通訊匯流排,這種選項通常用在DC快速充電,還可同時搭配多個DC-DC轉換器模組以達到負載。
DC-AC逆變器也是接收DC匯流排的輸出,但專門用於只能接受AC充電或一般慢充應用的車輛。這種雙向的逆變器可達到兩種功用:一是對DC匯流排輸出以滿足需求,二則是當充電站處於空轉狀態,抑或尖峰時段必須利用充電站來補強電網不足,便可反向對電網輸出電力。目前任何一種電源轉換模組的關鍵效率指數包括下列兩項指標:
.高效率
端對端>95%,為現今已經可以實現的數字。
.高功率密度
有助於縮小系統體積,因為建物空間是主要部署成本之一。
以上兩點都可以藉由先進的晶片技術達成。寬能隙(Wide Band Gap)半導體,尤其是碳化矽(SiC)元件,能在高切換頻率、更高的接面溫度下運作,而且效率更高。除此之外,還可自動縮小磁性元件和電容器等被動元件的尺寸。因為有更好的磁性元件材料,在設計上得以縮小體積並降低耗損,因此可以處理更高的功率。
中央控制器四功能確保穩定充電
中央控制器為充電站的大腦,功能包含最基本的使用者/訂戶的辨識及互動,甚至是確保車輛以最適方式充電,結合高效能運算、聯網與感測功能,功能強大。主要功能如下:
.使用者身份與支付
就使用者而言這是最常見的功能,透過智慧卡、一次性密碼(OTP)、支援NFC功能之手機,甚至藍牙執行。所有次要系統都由面板的微處理器/微控制器(MPU/MCU)控制。
.電源管理
這是充電站最重要但也最不顯眼的部分。系統控制器會持續監測電源情境:也就是供與需,接著決定如何從供應端滿足需求。無論光靠太陽能是否足以供應負載,或必須結合太陽能和儲存的電力,又或是同時需要從電網提供部分輸入。有些情境下可能會出現供給過剩或需求過高的狀況,其有足夠的智慧功能,可透過更改上述各種電源模組的設定,根據實際狀況傳送電力。
.聯網功能
最新的充電站和相關部署,都必須連上雲端以進行遠端監測及控制;且必須定期與中央管理系統(CMS)對話、回報轉移狀況、參數、診斷結果和運轉數據;同時需要接收來自中央管理系統的運轉指令及設定。因此目前已有多種聯網選項,包括有線及無線。3G/4G、Wi-Fi、乙太網路,甚至是LoRa,都已經用來進行遠端監測。
.保護、診斷和回報錯誤
為了防止故障,系統具有動作迅速的保護機制,會因為大浪或雷擊等外部事件、運轉方面的問題、意外或刻意的誤用/濫用,或者是短路、超溫或過電壓/過電流狀況而驅動。為持續降低運轉成本並將故障時間減至最低,系統會自動回報可能經常發生的問題。模組化的建構方式讓系統可以準確指出現場有哪個故障部分必須更換,這樣技術人員就能在抵達現場前做好準備。
以上簡單介紹太陽能電動車充電系統部署方式。讀者可以到位於印度諾伊達(Noida)的意法半導體印度開發中心,體驗可行的解決方案和各種子模組,也可以根據OEM代工業者的個別需求提供客製化的設計。電子行動和電動車的充電基礎架構是關鍵的焦點領域之一,相關研究也正如火如荼進行,希望解決上述所有功能模組的高效率問題。目前已有端對端晶片可讓電動車充電站得以成真,還有許多設計參考架構加速產品上市時間。
(本文作者任職於意法半導體)
施耐德電力轉換系統助太陽能發電
施耐德電機(Schneider Electric)日前宣布將提供Conext SmartGen電網級電力轉換系統,協助日本兩項大型太陽能電廠的建置,並提供長達20年的維修保固。
施耐德電機於2012年7月進入日本光電產業,提供電網級的電力轉換解決方案,在日本承包的太陽能專案合計已超過1吉瓦(GW),包括本次提供Conext SmartGen電力系統及相關保固合約的兩間大型太陽能電廠:位於岐阜縣郡上市,預計於2019年7月開始運轉的美並太陽能電廠(發電量預計42百萬瓦);以及位處岡山市和氣郡,將在2020年春天啟用的備前太陽能電廠(發電量70百萬瓦);以及另一份600百萬瓦的新合約,都與Conext SmartGen電力系統相關。
Conext SmartGen為2.2百萬瓦、1500V逆變器,適用於電網級規模的可再生能源與能源存儲,以較高容量減少電力傳輸時的損失,同時提升發電效率高達98.6%。Conext SmartGen解決方案為套裝形式,機櫃內預先佈好線,包含兩組電力轉換系統以及中壓變壓器與主環路單元,減少現場安裝時間、降低建置成本。此外,Conext SmartGen為EcoStruxure Grid解決方案下的第一層聯網產品,可藉由物聯網達到預防維護功能,降低維護難度、提升維護效率,並降低30年使用年限中的營運費用。本次宣布的20年期保固合約亦納入合約期間內維修所需的零件與人力,為市場首見的優質服務。
導入AI電網管理效率提升 虛擬電廠平衡電力供需
為了改善突發性的缺電問題並維持電網平衡,先進國家率先在電力市場導入需量反映制度,藉由要求客戶在尖峰時段關閉空調等設備,將省下來的電回饋給電網,以調度電力給急需用電的客戶、並支付節電獎勵,或是透過以價制量的方式,針對尖峰用電收取較高的電費,刺激客戶減少在尖峰時段的用電量。因此,部分能源業者瞄準需量訂價的需求缺口,協助客戶在電費較高的用電時段,從高價的電網電力轉向使用較便宜的蓄電池電力,讓客戶在不改變用電行為下,降低營運的電力成本,如美國STEM。
此外,為了改善再生能源供電不穩的問題,也有能源業者從自產自用的綠電生產者(Prosumer)角度思考,協助綠電生產者運用蓄電池儲存餘電,以便於需要時或電價較高的時段,使用蓄電池的電力來降低電費,或出售給急需用電的人來賺取營收,如德國Sonnen和美國Tesla。
STEM結合AI與儲能技術優化用電
STEM創立於2009年,前三年專注於儲能技術的研發,申請多項儲能相關專利,直到2012年才將公司從原本只提供硬體相關的儲能系統,轉為優化客戶用電之儲能服務,透過結合儲能、大數據分析及雲端運算技術,協助企業用戶在不改變原本的用電行為下,降低電費。此思維與傳統的能源管理方案不同,過往企業要降低用電成本,多從節能角度思考,有時甚至得配合電力公司在用電尖峰時段減少用電,但像飯店、工廠、養殖漁業等日常運作易受缺電所影響的產業,其電費將因需求高峰時段的加價,難以控制用電成本。
STEM並不僅是協助企業用戶控制用電成本,其最終目標是優化電網的服務效率,如降低電網尖峰負載、改善再生能源併網所產生的間歇性電力入網等電網平衡議題。因此,STEM一方面提供企業用戶服務,另一方面擴張其儲能站點,以累積足夠的可調度電力,協助電力公司進行大範圍場域的電力調度。此種透過儲能設備之間的相互連接所形成的蓄電池網路,構成了「虛擬電廠」,能在電力市場中扮演供電者的角色。
此虛擬電廠的概念於2015年初步被驗證。STEM藉由參與加州電力系統營運機構標案,進入到加州的電力零售市場,透過預測軟體將所設定的目標價格與市場競價,並自動調配可調度之儲電電力到電網中,且成功調度電力給PG&E(太平洋瓦斯電力公司)。
目前STEM已有800多個儲能站點(主要分布在加州和夏威夷),其中超過100個儲能系統參與虛擬電廠計畫,提供緊急電力調度服務,2017年內即有600多件虛擬電廠調度案例。特別是6月中的熱浪造成電價飆高,STEM於1小時內完成橫跨七區電網的電力調度,解救加州面臨大區域停電的威脅。
只有儲能技術並不足以協助用戶優化電力使用時段,需要一套機制判斷何時該用電網電力、何時該轉用蓄電池之電力。在STEM的解決方案中,由智慧能源監控裝置(Power Monitor)蒐集用戶電力使用習慣、當時氣候、電價等數據,進行用電行為之分析與預測,並透過PowerScope提供用戶可視化的分析報告,供用戶做營運決策之參考,如關燈、溫度調控、關閉部分設備等。然而,最關鍵的蓄電池放電與儲電時機的判斷,則交由儲能網路及系統背後的大腦--Athena,制定既快速又精準的用電優化策略。
Athena為全球第一個運用在儲能和虛擬電廠策略的人工智慧系統,透過大數據分析與深度學習技術,每分鐘可處理400MB資料,持續學習並改善其邏輯演算法。由於進行即時優化用電的決策過程非常複雜,即便擁有儲能技術,還必須經過數以千次的計算、預測模擬及瞬間判斷才能掌握低成本的用電時機。目前Athena已學習超過500萬小時,處理近兩億筆數據,並進行超過3,500萬次模擬預測,以確保掌握客戶的用電行為,精準地判斷切換電力來源的時機。
透過Athena的自動決策,可協助客戶進行24小時能源管理,在不增加客戶的工作負擔下,每年替客戶省下約800萬美元。此外,客戶還能加入虛擬電廠計畫,與800多個儲能站點共組虛擬發電廠,在電力市場賺取額外收入。
Sonnen P2P電力交易平台共享社區綠電
Sonnen於2010年成立,最初從家庭蓄電池製造進入市場,協助用戶解決太陽能供電不穩的特性,透過住宅式的儲能設備將餘電儲存,並結合社區能源共享與電力交易平台,讓用戶除了享受自用發電零電費,透過各家戶所裝設的儲能設備聯網,還能在自家發電不足時向鄰居借電,或是在餘電過盛時提供給需要用電的家戶。隨著Sonnen電池逐漸滲透市場,將所有蓄電池集結起來,甚至可以向電網供電,成為當地的虛擬電廠。
目前Sonnen已成為歐洲最大的蓄電池製造商,約有三萬套系統在全球營運,市占率超過20%,除了歐洲,也銷售至美國和澳洲。其中,Sonnen虛擬電廠服務已被驗證,並向德國、義大利、奧地利和瑞士的10萬名用戶提供虛擬電廠供電服務。
Sonnen從家庭蓄電池起家,考量到太陽能發電受限於氣候及日照時間,會有供電不穩的情況發生。為了讓用戶享受低成本的乾淨能源,Sonnen打造出P2P能源交易平台,讓裝設Sonnen蓄電池之用戶彼此之間可以進行儲電交易,打破傳統電廠對用戶的B2C銷電模式。
SonnenCommunity讓缺電戶以低於電網之電價購入綠電,讓餘電戶獲得高於電網收購之收益,加速用戶回收蓄電池裝設之成本,協助用戶達到零成本用電之目標,因此家戶的太陽能發電系統不僅能自用,還可透過能源交易平台創造收入,用戶不必擔心政府取消補貼再生能源發電後,將無法負擔再生能源發電設備之成本。此外,當加入SonnenCommunity的成員越多,越能促進綠電使用效率,形成一個獨立於中央電網的能源自給自足社區。
藉由能源交易平台所累積的服務基礎,Sonnen更進一步地嘗試將儲能系統結合區塊鏈技術,協助中央電網平衡電力供需。2017年11月,Sonnen和歐洲電網營運商Tennet進行歐洲第一個透過區塊鏈技術平衡電網供需試驗計畫,運用IBM的區塊鏈技術及Sonnen家庭儲能系統來穩定供電,讓德國北部過盛的風電可以儲存下來,並且透過南部儲能系統釋放太陽光電,改善北部風電浪費及南部工業區缺電問題。
此服務營運之關鍵在於蓄電池及家電設備的聯網和區塊鏈技術的配合。Sonnen採用Z-Wave通訊標準,讓蓄電池能和家用電器及其他設備之間進行無線控制,了解家電的用電時段,在電網超載時挪出儲電空間或在電量短缺時支援電網電力,並透過區塊鏈技術進行各時段之電力供需紀錄與電價計算,支援大量小額交易,以快速調節中央電網之負載,以較低成本的儲電服務改善電網營運。相較於過往為了要解決風電過剩或供電不足的瓶頸,電網營運商必須和第三方電廠針對風電減產或緊急供電額外簽約,大幅增加營運成本。以Tennet為例,2016年在德國就大約花費8億歐元的成本在平衡電網的供電系統。
此計畫除了降低穩定電網營運之成本,藉助現有的輸電線路和儲電設備,也能協助政府省下興建輸電線路的費用,提升了用戶家庭蓄電池服務的價值。目前試驗計畫正處於測試階段,將在六個月後進行結果評估。此外,為更進一步研究P2P能源交易機制,Sonnen於2018年3月加入NEMoGrid計畫,希望透過區塊鏈技術改善電網對住戶或住戶間的大量小額交易對當地電力成本、當地電網穩定性的影響,以促成分散式能源交易,進一步擴大儲能市場的規模。
台灣電力市場尚未普及需量反應制度,但台電正積極鋪設智慧電表,且台北市公宅也將進行需量反應之試驗,若能及早進入智慧能源管理軟體研發,將用電行為與儲能設備及電廠供電進行整合,所累積的服務經驗及相關能源資料蒐集,日後將成為電力公司及企業爭相合作之對象。
雖然台灣業者在今年已推出首座分散式智慧能源交易市場,然而和歐洲電力市場結構不同,無法直接仿效Sonnen的P2P綠電交易平台。事實上,目前美國市場也未開放民眾之間自由交易電力,因此Sonnen在進入美國市場時也無法直接導入在歐洲的成功模式,而是透過與當地建商合作,將儲能設備整合在新屋內,作為未來向電力公司提供、虛擬電廠服務之基礎設備。
台灣和美國市場相同,不開放民眾自由購電,但可以參考Sonnen進入美國的策略,在翻新舊社區計畫或新建案規劃時,將虛擬電廠概念埋入社區建造,為住戶描繪出永續生活之願景,作為未來尖峰用電短缺時,可彈性調度之電力,解除台灣缺電之困境。
資策會MIC產業分析師甘岱右