- Advertisement -
首頁 標籤 雷達

雷達

- Advertisment -

賽靈思/德國馬牌攜手開發自駕車可投產4D成像雷達

賽靈思(Xilinx)與德國馬牌(Continental)日前宣布,賽靈思的Zynq Ultra Scale+ MPSoC平台將支援德國馬牌的新型先進雷達感測器(ARS)540,兩家公司攜手開發首款已可投產的車用4D成像雷達。這項合作將使新生產的車款搭載ARS540以實現SAE J3016 L2的功能,並為達成L5的自動駕駛系統預先做好準備。 4D成像雷達能透過距離、方位、仰角和相對速度確定物體位置,進而提供詳細的駕駛環境資訊,這是僅蒐集速度和方位資料的傳統汽車雷達系統無法提供的全新功能。德國馬牌的ARS540是一款高階長距離4D成像雷達,不僅擁有高解析度,且偵測距離長達300公尺。它的視野寬度為±60°,可實現多重假設追蹤(Multiple Hypothesis Tracking),為駕駛提供精確的預測,而這對於處理複雜的駕駛狀況來說至關重要,例如偵測橋下交通堵塞的情況。此外,ARS540系統擁有較高的水平解析度和垂直解析度,便於偵測道路上的潛在危險物體並做出適當反應。ARS540充分展現這款感測器可擴展的應用能力,不僅能支援由人類駕駛負責監控車輛的SAE L2,還能提升至L5的全自動駕駛。 德國馬牌雷達專案管理負責人Norbert Hammerschmidt表示,賽靈思Zynq UltraScale+ MPSoC平台提供ARS540所需的高效能和先進的DSP功能,並結合了靈活應變能力,給予該公司市場的網路介面選擇。這些網路介面能處理在高集合傳輸率下的多種天線資料。德國馬牌近期與歐美頂尖的OEM贏得了多項設計,並持續與全球的OEM商討ARS540的採用事宜。如今,該公司對於延續與賽靈思的長期合作夥伴關係,並推出有潛力拯救生命的技術深感自豪。 賽靈思車規級(Xilinx Automotive, XA)Zynq UltraScale+ MPSoC是一種靈活應變的平台,使德國馬牌的4D成像雷達可適用於多種感測器平台配置,並且靈活適應OEM的規格。它為元件的可編程邏輯提供最佳平行處理效能,幫助實現ARS540 4D感測中完全獨立卻又能同時處理的關鍵流程。大量的DSP片(Slice)可為即時雷達感測器輸入提供硬體加速。 Yole Dévelopement(Yole)射頻設備與技術部門的技術與市場分析師Cédric Malaquin評論,4D成像雷達可提供更遠的偵測距離、更寬廣的視野和更深入的感知,是能夠幫助 L2到L5的開發者打造更安全的駕駛環境的重要感測器。該公司預計4D成像雷達將首先應用在豪華轎車和自駕計程車,市場規模預估將超過5.5億美元,且2020年到2025年間的複合年增長率(CAGR)將達到124%。透過合作開發這種新款的感測器模組,賽靈思與德國馬牌將帶來良好的市場機會。
0

非接觸3D現UI商機 開酷毫米波/AI手勢辨識潛力足

更直覺、便利的人機介面一直具有高度市場需求,手機的人機介面應用從按鍵及觸控晉升到不需接觸螢幕,非接觸式手勢隔空3D操控成為下世代的UI趨勢。新創公司開酷科技即運用毫米波(mmWave)與人工智慧(AI),整合通訊感測、處理器與AI加速器的系統單晶片(SoC),發表節能且即時的3D手勢辨識解決方案。相比觸控螢幕,開酷可以接收旋轉圖像等立體指令,技術潛力也獲得聯發科肯定而入股投資。 圖 開酷科技創辦人暨總經理王君弘。 技術/產品潛力獲聯發科入股 開酷科技創辦人暨總經理王君弘曾在美國科技業工作30年,期間在美國創業藍牙公司,回台後仍擔任美國老闆的顧問6年,隨後決定在台創業。開酷(KaiKu)一詞取自芬蘭文,意思是迴聲,呼應王君弘以雷達技術為主題創業。回顧創業歷程,王君弘坦言,找人才至今仍是一大挑戰。一方面其業界的人脈以美國地區為主,同時新創事業及新技術的開發皆需冒險精神,因此在台灣找尋合作對象或員工都不容易。然而近期開酷的技術在業界已受到肯定,甫完成的融資已獲聯發科入股。 毫米波/AI加速器助資料回傳穩定且即時 手機的操作不斷升級,無線的手勢辨識技術可以擴大手機操作的豐富性,增進使用者體驗。然而目前常見的手勢辨識方案透過相機鏡頭執行,但是相機本身的大功耗容易導致手機發燙,需要很強的CPU才能達到即時回饋的效果,並且若為配合鏡頭位置在螢幕正上方控制,手勢動作的範圍受限,造成使用者的不方面,尤其干擾遊戲操作。為改善傳統手勢辨識遇到的問題,王君弘便由豪米波雷達研發SoC新解方。 開酷的手勢辨識測技術核心為毫米波60GHz,開酷科技行銷總監林子超表示,基於此頻段為100GHz以下的頻段中可用頻寬最寬的選擇,硬體上可以使用57-67GHz範圍的頻段,而能清楚辨識短距離內的不同物體,如辨識出兒童手勢動作中的兩根手指。同時,60GHz的頻率傳遞距離較短,且若是訊號碰觸到其他物體時會快速衰減,因此可以避免單一手機的辨識受環境干擾。 此外,手勢辨識晶片的封裝中整合一發(Tx)三收(Rx)的天線,強化晶片的訊號接收功能,加上獨特的演算法換算成空間座標,達到3D定位的效果,因此能夠辨識手伸入螢幕中選轉影像等3D指令。除了毫米波技術,產品同時配備AI加速器與MCU電源管理功能。手勢透過AI的演算法辨識,而做為一個人機介面裝置(HID),開酷希望可以克服能源消耗的問題,並且確保資料運算的即時性,因而選擇使用AI加速器,盡可能在本地處理資料,並且重複使用數據,便能達到低耗能且資料即時回傳的目標。 晶片擬年底量產同時布局AIoT市場 電源方面,雖然手機皆有強大的電源管理系統,但是開酷仍在產品中放入MCU來管理電源,目的是布局AIoT市場。王君弘說明,例如做一個可以調亮度的電燈開關,或是咖啡機透過手勢操作,這類架構便宜、簡單的產品不會有很強的MCU。因此若是手勢辨識產品本身已有MCU,即可應用在這些聯網產品中,並且不只做電源管理,還可以執行簡單的軟體,為以後進軍AIoT市場鋪路。 此外,手勢辨識產品設計USB外接模組,可以做為手機的外接應用,有利於進入手機售後市場。目前此產品可以用於手機遊戲或VR操作,透過不需要接觸螢幕與反應即時等特性,配合現有的觸控螢幕,提供使用者更多元且良好的遊戲體驗。王君弘表示,開酷的測試晶片從天線改良、加入AI加速器、客戶討論等多次修改後,現在已研發至第三版,預計2020年底進行量產。
0

軍工/電信市場左右逢源 GaN RF出貨成長可期

雖然GaN目前最受關注的應用領域為電力電子,特別是各種中低功率的電源供應器、USB快速充電器等應用,但GaN在射頻(RF)領域的應用也在快速成長。研究機構Yole Developpement預估,全球GaN RF元件市場規模將從2019年的7.4億美元成長到2025年的20億美元,複合年增率(CAGR)為12%。 GaN RF最大的應用市場將是軍用雷達,但5G所創造出的需求也不容小覷。Yole預期,在5G領域,GaN RF將與LDMOS技術出現激烈競爭,基於GaN的功率放大器(PA)將因為具有更小的外觀尺寸與更好的效能,而受到原始設備製造商(OEM)的青睞。  
0

自駕交通工具帶動感測器市場起飛

汽車等交通工具搭載自動駕駛功能,將是擋不住的趨勢。而自動駕駛交通工具不可或缺的各種感測技術,也將因為這股風潮,成長為一個龐大的產業生態系統。研究機構Yole Developpement預估,未來15年內,自駕車上所撘載的各種感測器總市場規模,將出現 51%的年複合成長率(CAGR)。屆時,與機器人車輛生產相關的總收益將達到600億美元,其中的40%將來自於車輛本身,28%來自於感測硬體,28%來自於運算硬體,剩餘的4%則來自系統整合。 Yole的分析團隊對2024年感測器市場規模的預期是,光達將達到4億美元,雷達為6,000萬美元,攝影機為1.6億美元,IMU為2.3億美元,GNSS設備為2,000億美元。不同類型感測器之間的分配情況在未來15年內或許會發生變化。無論如何,感測硬體的總收益將在2032年達到170億美元。  
0

英飛凌首度啟動車用覆晶技術生產

英飛凌科技(Infineon)在汽車電子電源供應器小型化之路上又邁進一步,打造符合車規市場嚴格品質要求之專屬覆晶封裝生產製程的晶片,並推出首款相關產品—線性穩壓器OPTIREG TLS715B0NAV50。 覆晶技術以上下翻轉的方式封裝晶片。由於晶片的發熱面面向封裝底部,並且更靠近PCB,因此熱感應可改善2至3倍。相較於傳統的封裝技術,更高的功率密度則可大幅縮小產品尺寸。 英飛凌新款線性穩壓器(TSNP-7-8封裝,2.0mm×2.0mm)的尺寸比既有參考產品(TSON-10封裝,3.3mm×3.3mm)減少60%以上,且熱阻仍維持不變,因此適合像是雷達與攝影機等電路板空間非常有限的應用。OPTIREG TLS715B0NAV50提供5V電壓以及150mA的最高輸出電流能力。 覆晶技術多年來應用已於消費及工業市場。由於對空間的要求日趨嚴苛,汽車電子,尤其是數量持續成長的雷達及攝影機系統,也需求更小的電源供應解決方案,同時對品質的要求也大幅提升。為了提供良好的覆晶品質,英飛凌不倚賴於現有消費和工業級的後續驗證,而是進行車用裝置專屬生產製程的開發。 未來,英飛凌將以覆晶技術強化OPTIREG系列汽車電源供應產品組合,此外也規畫在切換式穩壓器及電源管理IC應用此項技術。
0

簡化ADAS閘道設計 TI推低功耗處理器

德州儀器(TI)日前推出新Jacinto 7處理器平台,該平台提供強化深度學習的能力與進階網路,有利於解決先進駕駛輔助系統(ADAS)及車用閘道器應用面臨的設計挑戰,促使環境感知能力提升,並加速整合車輛數據資料運算能力。 德州儀器推出兩款車用裝置提升車輛性能。 本次推出的兩款車用裝置,具備用於區隔與促進如電腦視覺和深度學習這類數據密集型任務的專用晶片加速器。新品分別為用於ADAS的TDA4VM處理器,以及用於閘道系統的DRA829V處理器平台,兩者各包含一個功能安全微控制器,並共享同一軟體平台,除使OEM廠商和一級供應商能利用單晶片支援ASIL-D安全性關鍵任務(Safety-critical Tasks)並保有便利性外,更使開發者能在多個車輛領域中重覆使用現有已建置的軟體,降低系統複雜性與成本。 為了使車輛接收大量訊息,處理器或系統單晶片必須快速及高效即時管理多階層處理,並在系統功率預算內運作。TDA4VM處理器為此提供晶片分析,結合感測器預先處理功能,實現更高系統效能,使OEM廠商和一級供應商能以高解析度8-MP攝影機支援前置攝影機應用,讓視野更廣,同時增加駕駛輔助等先進功能。 此外,該處理器使用5到20W的低功率執行高性能ADAS運作,且無需主動冷卻;能夠同時操作4到6個3MP攝影機的特性,使該處理器將雷達、光達與超聲波等其他感應模組融合在單一晶片上,因此可作為ADAS的中央處理器,並支援自動停車中關鍵功能,如環繞景象與圖像顯示處理,提升車輛360度的環境感知系統。 隨著車用技術進步,車用閘道器亦需靈活的處理器管理大量數據,並支援不斷變化的自主需求與強化的連接性能。DRA829V處理器則加速軟體定義車輛的數據資料庫,整合現代車輛所需的計算功能及晶片上的PCIe交換器。同時亦整合支援TSN的8埠gigabit乙太網路交換器,使車輛享有更快的高性能計算和通訊功能。 兩款新裝置除了使OEM廠商與一級供應商能在單一裝置支援混合關鍵性(Mixed-criticality)應用外,其高頻寬晶片亦使開發者易管理車輛中軟體的開發與驗證,使系統得以不斷升級。
0

Bosch力推低成本車用光達 加速自駕車發展

博世(Bosch)於日前宣布將投入生產用於汽車的低成本遠距光達(LiDAR)感測器,偵測範圍包含短距的城市至長距的高速公路,希望透過更低價的產品,加快光達普及率及推動自駕車發展。 Bosch宣布投入生產用於自動駕駛的低成本光達感測器。 Bosch管理董事會成員Harald Kroeger表示,透過突破感測器技術侷限,該公司為可見的未來做出此決定性貢獻,使自動駕駛技術得以進步,期望使自動駕駛方便及安全,並成為卓越實踐。 由於光達提供極高解析度、遠距測量及廣闊視野,被視為推動自動駕駛技術的重要關鍵。Bosch開發人員經研究調查,分析高速公路至城市的全自動駕駛功能案例並證實,如欲使自動駕駛推出時安全性最大化,整合部署雷達、影像和光達三個感測器勢在必行,可排除雷達偵測盲點及光線干擾,確保車輛感測,不僅將符合自動駕駛安全要求,未來更能有效整合技術至各種車型。 價格及技術一直是光達普及的障礙—目前雖有數家廠商將光達技術使用於汽車,但高昂價格令市場無法引起強烈迴響,根據路透社報導指出,光達設備進行大量生產的條件,必須低至200美元才有可行性。環顧市場中致力於研發低成本光達的眾多公司,Bosch本次宣布將投入研發低成本光達感測器,估計有機會可以加速該技術於市場中的廣泛應用。
0

部署自駕市場 賽靈思:FPGA比ASIC更具靈活優勢

要實現自動駕駛,意味著要先實現高速運算,以處理、分析大量的感測數據(例如雷達、光達、攝影機等),因此,除了CPU、GPU之外,現在也已有越來越多車商或半導體業者採用高效、低功耗且能大規模量產的ASIC(例如特斯拉)。對此,賽靈思Xillinx汽車戰略與客戶市場營銷總監Dan Isaacs表示,自動駕駛的功能需求不斷變化,而可編程的FPGA晶片有著更好的設計和升級彈性,靈活性優於ASIC,更符合自動駕駛多樣的功能設計。 賽靈思汽車戰略與客戶市場營銷總監Dan Isaacs表示,汽車市場需求變化快速,需要靈活彈性的解決方案 Isaacs進一步說明,FPGA是一個可編程的邏輯晶片,可以支援多種演算法,以讓晶片適用不同的自動駕駛功能(例如安全、感測等)。若是採用ASIC,有要如果要更改其中一項功能,或是指令要求的話,很可能無法輕易更動,而需要重開一顆ASIC,如此一來不僅成本提高,也可能會增加風險,因為不確定後來新的ASIC是否適用。像是自動駕駛的安全需求是不斷變化、採用FPGA的話,便可以用同一個元件滿足各種功能調整、改進、增添的需求,而這是ASIC無法做到的。 Isaacs指出,許多人認為FPGA價格遠高於ASIC,因此較少採用,其實這是一種對FPGA的誤解。賽靈思目前已出貨1.7億顆的車用FPGA晶片,這證明了FPGA的適用性、效能及優勢,且可編程的靈活特性又可以減少重開晶片的風險及成本;換言之,FPGA所能帶來的效益及優勢已遠遠超過其價格,擁有相當好的性價比。 另外,布局自動駕駛市場,賽靈思也於近期發布全新高效能的自行調適元件XA Zynq UltraScale+ MPSoC 7EV與11EG,進一步擴大其車規級16奈米系列產品。這兩款新元件能提供最高的可程式化容量、效能與I/O功能,並為L2+到L4等級的先進駕駛輔助系統(ADAS)與自動駕駛應用提供高速資料彙整、預處理和分配(DADP)及運算加速。新款元件提供超過65萬個可程式化邏輯單元與近3千個DSP單元,和前一代最大元件相比增加2.5倍。在新增這兩款高效能元件後,包括汽車製造商、自駕計程車開發商和一級供應商都能在一定的功耗範圍內執行DADP與運算加速,加速自動駕駛車輛的生產部署。 Isaacs說明,新推出的元件主要是因應自動駕駛愈來愈複雜的運算需求。如今的自動駕駛車輛有著越來越多的感測器,像是雷達、超音波、影像感測器和光達等。這些感測器所收集的數據資訊都要快速、即時地進行分析處理,因此市場對於運算的需求越來越高;因此,該公司擴展XA產品系列,協助車商、系統業者實現數據整合處理,並透過更加的靈活性和擴充能力,滿足瞬息萬變的自駕車市場。
0

確保自駕車行駛安全 感測技術舉足輕重

和當初的登月計畫一樣,邁向安全自駕車的路上也潛伏著許多障礙。最近多項自駕車事件引發大眾矚目,引發持負面看法的人士聲稱自駕車本身以及所處的週遭環境太過複雜,另外,其同時也還存在著太多的變數,而軟體也仍然存在著非常多的問題。對於曾參與ISO 26262車輛功能安全標準相容測試的人士而言,抱持這樣懷疑的態度是可以理解的,其立論的基礎為五家自駕車公司於2017年在矽谷進行測試,實際行駛里程除以測試過程中出現解除自駕(Disengagements)事件的次數(圖1)。2019年的數據則尚未公布。 圖1 加州五大自駕車製造商總行駛哩程除以解除自動駕駛次數的數據(2017年12月~2018年11月)。在此期間共有28家廠商在加州境內進行公開測試,自駕模式共行駛2,036,296英哩,期間共出現143,720次解除自動駕駛。 然而,自駕目標已勢在必行:完全自主駕駛的車輛即將誕生,而安全則是最優先的要素。加州汽車監理局(DMV)2018年非官方報告顯示,自駕車每英哩解除自動駕駛的次數持續降低,顯示系統的能力逐漸提升。然而這樣的趨勢還必須加快速度。 將分工協作與新思維放在第一位使得許多車廠直接和晶片廠商合作,感測器製造商開始和AI演算法開發者探討感測器融合;軟體開發商也終於和硬體供應商聯手推動軟硬體整合。舊有的合作關係逐漸改變中,而各方也積極持續發展新的合作關係,藉以優化最終設計成品的效能、功能、可靠度、成本以及安全性。 整個產業體系正尋找正確的模式,藉以建構與測試完全自駕車,進而支援包括無人駕駛計程車以及長途貨車等新興應用。在這樣的發展過程中,隨著感測器不斷改良,帶動先進駕駛輔助系統(ADAS)的進步,也促成了業界迅速推進至更高層級的自動駕駛。 這些感測器技術包括攝影機、光學偵測與測距(光達)、無線電波偵測與測距(雷達)、微機電系統(MEMS)、慣性量測單元(IMU)、超音波以及全球衛星定位系統,它們為AI系統提供了關鍵的輸入訊息,協助驅動著真正具感知能力的自駕車(圖2)。 圖2 各種不同的感測模組用來感知環境以及為ADAS提供車輛導航功能。它們通常獨立運作,為駕駛員提供警訊,協助作出應對的操駕動作 感知能力讓自駕車安全有保障 車輛的智慧程度通常以自駕車的自主能力等級(Levels Of Autonomy)來表達。其中第一級(L1)與第二級(L2)大致上屬於警示系統,到了第三級(L3)以上就具備避免意外的能力。到了第五級,自駕車就沒有配備方向盤,完全自主行駛。 在最初幾個系統世代,車輛開始配備L2功能,感測器系統已能獨立運作。這些警示系統的誤警率(False Alarm Rate)偏高,由於太煩人以致常被關掉。為打造具備完全感知能力的自駕車,車上配備感測器的數量顯著增加。此外,效能以及反應時間也大幅改善(圖3、圖4) 圖3 具完全感知能力的自駕車能感知當前與過去的歷史狀態、週遭環境的性質,以及車輛本身的狀態(位置、速度、軌跡以及機械狀況)這些都是自駕車維持安全不可或缺的要素。 圖4 自動駕駛等級以及感測器有不同的要求。 隨著車上裝載越來越多感測器,它們能進行更良好的監視,以及察覺當前的機械狀況,像是胎壓、重量變化(例如感知有一位或六位乘客上車或下車),以及其他磨耗因素影響到煞車與操駕功能。隨著加入更多外部感測模組,車輛融入更完整的感知能力,能掌握車輛本身健康狀況以及週遭環境。 感測器模組的諸多進步讓車輛不僅能辨識環境的當前狀態,還能察知歷史紀錄。這方面要歸功於ENSCO公司航太科學與工程部門首席技術師Joseph Motola博士的研發成果。這項感測能力從感知如坑洞位置等這類簡單的路況,一直涵蓋到感知事故種類,以及在某些地區過去發生紀錄等複雜功能。 這些感知觀念在發展之際,包括感測等級(Level of Sensing)、處理、記憶體容量,以及連網等障礙使它們看似難以實現,但如今局勢已大為改觀。如今不僅系統能存取歷史資料,還能參照車輛各感測器擷取的即時資料,讓預防性以及事故規避動作的準確度能持續提高。 舉例來說,IMU能偵測忽然的顛簸或偏向,這些狀況都反映道路存在坑洞或障礙物。在以往即使收到這樣的資訊也沒有用,但如今即時連結讓這類資料能立即傳送到中央資料庫,用以警告其他車輛及早避開坑洞或障礙物。另外包括攝影機、雷達、光達,以及其他感測器的資料,也能進行相同的處置。 這類資料經過編譯、分析、融合後,讓車輛能針對所處環境做前瞻性的認知。如此一來,車輛就扮演學習機器的角色,進而做出比人類更好、更安全的決定。 感測融合發揮互補作用 車載尖端感知技術方面已累積長足的進展,業界的重點聚焦於從各種感測器收集資料,然後運用感測器融合策略盡可能發揮最大的互補作用,弭平在各種狀況下各自的弱點(圖5)。 圖5 每種感測模組都有其長處與弱點,但運用適當的感測器融合策略,即可融合各家長處並補強各自的弱點。  然而,若其要發展成真正能解決業界面臨問題的可行方案,則還有很長的一段路要走。舉例來說,攝影機能計算到橫向速度(亦即物體沿著和車輛行進路線垂直方向前進的速度)。另外,即使是最好的機器學習演算法,也需要約300毫秒的時間才能偵測橫向移動,並將誤報率維持在夠低的水準。若有一個行人在車輛前方以時速60英哩的速度前進,數毫秒的時間可能就是皮肉傷或致命重傷的差別,因此,反應時間至關重要。 300毫秒延遲是因為需要對連續視訊畫格進行Delta向量運算,而要做到可靠的偵測程序,至少需要10格以上的連續畫格,因此必須處理完一或兩個連續畫格,車輛才有時間去做反應,雷達目前已能做到這點。 同樣的,雷達在速度與物體偵測方面存在許多優勢,像是方位角(Azimuth)以及高度,還有能繞著看物體,但仍然需要提供更多時間讓車輛做出反應。面對時速400公里以上的目標,新發展的方案必須至少達到77GHz~79GHz的運行頻率。如此高的速度似乎太過,但卻是支援複雜分向車道公路的必備條件,在這類道路上車輛會以超過時速200公里的相對速度朝反方向行駛。 光達是介於攝影機與雷達兩者之間的感測器,這樣的屬性使它能運用在完全感知自駕車上並扮演關鍵元件(圖6),但眼前,光達也仍有許多挑戰有待克服。 圖6 完全感知車輛運用先進雷達、光達以及攝影機,搭配慣性量測單元以及超音波技術,造就了360度的觀測能力。 光達持續演化成為小巧廉價的固態元件,能裝設在車身四周,支援360度全面向覆蓋;再輔以雷達這個攝影機系統,加入更高的角解析度(Angular Resolution)以及感知物體距離的深度判斷(Depth Perception),因此也就能提供更精準的環境3D地圖。 然而,採用近紅外線(IR) (波長850~940奈米)作為光源有可能對視網膜造成傷害,因此光束輸出能量嚴格限制在905奈米波長下每脈衝上限為200奈焦(nJ)。然而若改用1,500奈米波長的短波IR,光線會被整個眼睛表面吸收,主管當局可採較寬鬆的規範,每脈衝上限設為8毫焦(mJ)。由於是905奈米光達能階的4萬倍,使得1,500奈米脈衝光達系統能提供4倍的傳輸距離。此外,1,500奈米系統對於像是陰霾、灰塵,以及懸浮微粒等環境狀況具有更高的耐受力。 1,500奈米波長光達面臨的挑戰是系統成本,主要來自光檢測器(Photodetector)技術(現今採用銦鎵砷材質元件)。發展高品質解決方案,高靈敏度、低暗電流,以及低電容。是打造1500奈米波長光達的關鍵要素。此外,隨著光達系統發展至第二與第三代,必須進行各種應用優化電路整合,才能壓低尺寸、功耗,以及整體系統成本。 除了超音波、攝影機、雷達,以及光達之外,還有其他感測模組也扮演關鍵角色,促成業界發展完全感知自主運輸載具。GPS讓車輛能在任何時刻掌握自己所在位置。不過,有一些地方無法收到GPS訊號,像是隧道以及高層建築物之間。在這些情境中,慣性量測單元就扮演了關鍵的角色。 經常被忽視的慣性量測單元,其所依賴的是不受環境條件影響維持恆定的重力,因此在推測導航(Dead Reckoning)方面相當有用。在暫時收不到GPS訊號時,推測導航採用包括車速計與慣性量測單元的資料來偵測行進的距離和方向,然後將推算出的資料疊到高解析地圖上。如此,即可讓感知力自駕車保持在正確的行進路線上,直到恢復正常GPS收訊為止。 高品質資料節省時間/提升安全 和這些感測模組一樣重要的是,若感測器本身並不可靠,而輸出的訊號並不是精準地擷取,並以高精準感測器資料的狀態饋送到上游端,那麼這些關鍵感測器的輸入資料就不可靠,輸入垃圾,輸出的也只會是垃圾。 要因應上述課題,即使最先進的類比訊號鏈也必須持續改進才能進行偵測、擷取、數位化,轉換成感測器訊號的輸出內容,因此其精準度與精密度不能隨著時間與溫度出現漂移。憑藉正確的元件以及設計的最佳策略,包括隨著溫度、相位雜訊、干擾以及其他造成不穩定現象產生的偏差漂移,其產生的難題都能大幅消弭。總而言之,高精準度/高品質資料至關重要,其攸關著機器學習以及AI處理器是否能正確訓練,以及做出正確的運行決策。然而這些程序必須在短短幾秒的時間內迅速完成。 在資料品質得到確保後,即可著手優化各種感測器融合方法以及AI演算法,以獲得正確的結果。不論AI演算法訓練到多好的程度,一旦模型完成編譯並部署到網路邊界的裝置之後,這些演算法就完全得依賴可靠、高精準的感測器資料才足以發揮效率。感測器模組、感測器融合、訊號處理以及人工智慧之間的互動,已對智慧/感知/自駕車的發展產生深遠的影響,並提高我們對於確保駕駛、乘客、以及行人安全的信心。然而倘若欠缺可靠、精準、高精密度的感測器資訊,上述目標就難以實現,而這些要素也都是安全自駕車的基礎。 和所有先進科技一樣,投入越多,就會發掘更複雜的使用情境以及衍生的問題,其複雜性將持續讓現有技術顯得力不從心,因此,必須期盼新一代感測器以及感測器融合演算法能克服這些難題。 和最初的登月計畫一樣,自駕車的整個計畫將對社會產生著長遠的顛覆性影響。從駕駛輔助到取代駕駛,不僅大幅改善了運輸的安全,生產力也會出現巨大的躍進。而這樣的未來,則有賴於感測器奠立的基礎,在此基礎之上各界才能發展所有其他元件。 (本文作者為ADI自主傳輸及安全副總裁)
0

布局L4市場 汽車/半導體產業全力衝刺

自動駕駛風潮持續熱燒。在Level 2的ADAS技術逐漸成熟後,眾多國際車廠除了持續提供更高效能、更安全的ADAS功能,以逐步達到Level 3外,也紛紛同時投入Level 4自駕系統發展,藉此加快實現自駕車實際上路的願景。 現代開發全新智慧巡航控制技術 布局Level 3以上自駕車,現代汽車集團(Hyundai Motor Group)日前宣布研發首個基於機器學習的智慧定速巡航控制系統(SCC-ML),該技術會將駕駛人的行為模式納入其自動駕駛行為中,進而為駕駛人創造自定義的體驗。 現代汽車集團副總裁Woongjun Jang表示,新的SCC-ML技術改進了先前ADAS技術的智慧性,並大幅提高了半自主功能的實用性,現代汽車集團將繼續致力於創新AI技術的開發工作,以引領自動駕駛發展。 智慧巡航控制(SCC)為ADAS提供了基本的自動駕駛功能和核心技術,也就是當以駕駛員選擇的速度行駛時,可與前方車輛保持距離;而新研發的SCC-ML技術將AI和SCC結合到一個系統中,該系統可自行學習駕駛員的模式和習慣,透過機器學習,智慧巡航控制系統能以與駕駛人相同的模式自主駕駛。 另一方面,除了研發新一代智慧巡航控制系統外,現代也宣布與零件大廠Aptiv合作,投入16億美元資金創建合資企業,搶攻自駕車市場版圖。雙方共同聲明指出,此合資公司將推動SAE 4級(Level 4)和5級(Level 5)自動駕駛技術的設計、開發和商業化;該合資企業將於2020年開始測試完全無人駕駛系統(Level 5),並於2022年開始為機器人自動化廠商、車隊營運商和汽車製造商提供自動駕駛平台。同時,該合資公司將以韓國作為關鍵技術中心、汽車改裝基地和自動駕駛行動服務平台的試驗場域。 博世/戴姆勒共同開發無人自動停車技術 博世(Bosch)則是和戴姆勒(Daimler)共同開發自動停車技術,並已獲德國巴登-符騰堡邦官方核准,在斯圖加特的Mercedes-Benz博物館停車場提供無人駕駛自動泊車技術,而此一停車技術也是世界首個獲官方核准可日常使用的Level 4全自動停車功能(圖1)。 圖1 博世和戴姆勒共同開發的自動停車技術,已應用於斯圖加特的Mercedes-Benz博物館停車場。 據悉,透過此一技術,當駕駛開車到停車場、下車,接著只需點擊智慧型手機便可以將車輛自動送到停車位,無需駕駛即可自動停車。一旦駕駛離開停車場,車輛就會自動行駛至指定的位置停放;取車時,汽車也會以完全相同的方式返回下車點。過程中仰賴Bosch所提供的智慧停車場基礎建設,以及Mercedes-Benz自動駕駛科技的交互合作。 除了研發自動停車技術外,Bosch也與戴姆勒攜手於聖荷西進行自動駕駛叫車試驗服務。Bosch、戴姆勒和聖荷西市三方已簽訂備忘錄,未來將使用賓士S-Class自駕車,提供給聖荷西市中心和西聖荷西的聖卡洛斯(San Carlos)和史蒂文斯溪谷(Stevens Creek)之間的走廊地帶的特定社區來使用。 此前導試運行計畫將可提供如何使高度及全自動車輛整合到多模式平台的相關資訊,主要目的為提供無縫的數位體驗,使特定社區的使用者可透過線上叫車,召喚自駕車,並預約指定的接駁地點和目的地,行駛過程由安全駕駛員全程監控。 Bosch原廠汽車零件銷售部門總經理楊建新(圖2)表示,該公司在前幾年提出「三零願景」,也就是希望達到零事故、零排放、零擔憂。為此,自動駕駛發展可說勢在必行,而目前自動駕駛市場發展呈現兩個方向,一種是在一般房車上持續添加性能更強的ADAS功能,使汽車更自動化、更安全可靠,進而達到Level 3以上的等級;而另一種發展方向則是從公共運輸切入,在限定區域、路線上發展Level 4以上的自駕車,以營運服務為主。 圖2 Bosch原廠汽車零件銷售部門總經理楊建新表示,不論是ADAS或是Level 4的自駕車,都有龐大商機。 楊建新進一步指出,對於該公司而言,這兩種發展方向都具備龐大潛在商機,為此,博世採取雙頭並進的策略,一方面繼續強化ADAS功能,另一方面也投入Level 4自駕車的發展,並擴大應用場域,就像是與戴姆勒合作研發的自動停車技術,不僅可用在室內停車,同樣也可以用於汽車產線上,也就是當汽車生產完成後,不用再花費額外人力將車從產線開到其他地點,只需一個按鍵就可移動車子。 感測技術仍是自駕車發展重點 要實現自動駕駛,如何提升自駕車的感知能力是一大要件。為此,恩智浦半導體(NXP)積極推動高效能、低成本的雷達解決方案。像是新型RDK-S32R274雷達解決方案,是由NXP與Colorado Engineering合作構建,旨在幫助開發人員使用NXP技術,快速開發高性能汽車雷達的原型。 另外,NXP也與吉利汽車合作,共同探索下一代毫米波雷達感測器及多雷達系統的前瞻性合作定義,將其用於下一代ADAS與自動駕駛功能。NXP將為吉利汽車提供更高效且密集的支援,以滿足持續的技術演進需求,協助汽車企業實現創新變革,贏在未來。 NXP指出,毫米波雷達是實現自動駕駛不可或缺的關鍵因素,以此為合作起點,NXP將針對車用ADAS感測器、資料融合、安全控制、通訊及車載網路等應用領域,為吉利汽車提供更具針對性且領先國際的解決方案;並整合雙方技術與優勢,在此領域進行前瞻性設計及研發合作,引領產業技術變革。 NXP半導體汽車電子事業部系統架構師黃明達(圖3)表示,雷達是自動駕駛不可或缺的關鍵元件,而越高級別的自動駕駛車輛,越需要更精準、高效而且低成本/功耗的方案,而該公司也會繼續往這方向發展。 圖3 NXP半導體汽車電子事業部系統架構師黃明達表示,未來自駕車對於感測元件的性能要求會越來越高。 黃明達說明,舉例來說,未來的自動駕駛車輛可能會需要有「成像」能力的雷達,使其對周遭環境感知更精準。而要讓雷達具備成像能力,主要是提升雷達的角分辨率,目前單顆雷達晶片的通道多是3發4收,若將集結數顆雷達晶片,組成一個更大的收發陣,像是將四顆雷達晶片整合在一起,如此一來通道數就會明顯增加,變成12發16收(因為乘以4倍)。這麼一來,此一雷達方案的角分辨率就會有極大的提升,傳送回來的反射點也會從過往單顆雷達晶片2~3個,變成數十、數百個,也因此能夠更清楚的將物體輪廓描繪出來,而這也就是所謂的「成像能力」,使自駕車對於環境的感知更清晰、精準。因此,成像雷達也成為NXP下一代產品的主要發展方向。 除了NXP之外,Bosch同樣也積極布局感測市場。Bosch開發了一款使自駕車能精準定位的感測器:車輛動態和定位感測器。此款新型感測器包含一個高效能接收器,用於接收自駕車精確定位所需之全球導航衛星系統(GNSS)訊號。使用衛星定位的挑戰在於如何處理不準確的數據資料,由於GNSS衛星在距離地表25,000公里的軌道上,以每秒4,000公尺的速度繞行地球,在訊號傳至地面的過程中,必須穿過電離層和對流層中的雲層,這將導致分散訊號並產生誤差。 這就是為什麼Bosch採用各種數據業者所提供的校正數據,以及於2017年成立Sapcorda合資公司的原因。在已知精確位置之地面參考站網路的協助下,數據業者可進行GNSS定位資訊校正任務,校正資料則藉由雲端系統或地球同步衛星傳送至汽車。 楊建新指出,感測器是自動駕駛重要的關鍵零組件,因為汽車是需要處理最多訊息的交通工具。當然,除了感測器之外,車輛的資料處理能力和通訊能力也都要跟著強化,才能因應源源不絕的感測資訊,也因此,車輛運算和通訊功能是須伴隨著感測技術一同成長,這也是車廠、系統廠等重點發展方向。 除此之外,為昇科科技資深副總經理陳正夫則表示,自駕車的感測設計另一個重點在於要有備援機制,也就是在同一個區域內(例如車頭)至少要有兩種以上不同的感測器,除了可以互相補助,提升感知能力外,重要的是確保其中一種感測器有損毀時,另一種感測器還能持續運作(例如攝影機壞了還有雷達可感測),避免自駕車發生意外。換言之,備援機制是Level 3以上的車款十分重要的設計,這也促使感測器的需求大量增加。 搶搭自駕熱潮 台灣不落人後 自動駕駛熱潮席捲全球,台灣也積極搶搭此波浪潮,且已有了不少亮眼成果。例如財團法人車輛研究測試中心(ARTC)便串連產業打造的MIT自駕電動小型巴士「WinBus」(圖4),已達美國汽車工程師協會(SAE)的Level 4高度自動駕駛(High Automation)階段,在固定或封閉式場域內,車輛無須人為介入,可以完成所有駕駛和環境監測功能。 圖4 由ARTC串連台灣產業鏈所研發的自駕小巴WinBus。 財團法人車輛研究中心研究發展處經理陳建次表示,自駕小巴的設計包含定位、感知、決策+控制三大面向,當中所用的關鍵技術包含3D高精地圖、光達點雲圖建立、光達SLAM定位技術、AI影像辨識、多感測融合、動態軌跡規劃技術,以及駕駛模擬運算技術等。這些都是實現Level 4車子不可或缺的要素,而ARTC期望藉由打造自駕小巴,為台灣國內上下游系統與零組件供應鏈帶來新市場與經濟效益,同時實現智慧交通願景。 車輛中心董事長黃隆洲則透露,未來這自駕小型巴士將先支持政府沙盒運行政策,而2019年第4季將協助勤崴國際、中華電信行動數據分公司、宏碁智通為首的營運團隊提出申請,於車輛中心所在的彰濱工業區投入運行,串聯周邊觀光工廠之公共接駁運行服務;接下來也將到各場域應用,累積運行實績,以次系統及創新營運服務模式。 除此之外,為加速自駕產業發展,ARTC也與宏碁智通、聯華聚能科技及鑫威汽車工業等18家上中下游供應商正式攜手組成「自駕車產業聯盟」。由產官研共同合作,串聯科技軟硬實力,結合「營運服務」、「自駕整合」、「電能整合」與「車體製造」等完整自駕車產業鏈,打造台灣SAE...
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -