- Advertisement -
首頁 標籤 載波聚合

載波聚合

- Advertisment -

5G考驗天線設計 模擬將成關鍵技術

上述三大5G應用場景中的eMBB 場景主要提升以「人」為中心的娛樂、社交等個人消費業務的使用體驗,「高速率、大頻寬、低時延」正是提高個人用戶消費體驗的關鍵。而手機終端作為使用者體驗5G的重要載體,在5G時代下面臨著新的通訊架構與設計挑戰。 5G終端天線研發面臨多重挑戰 5G已於2019年底正式進入商用,這將帶來大量資料通訊、萬物互聯、即時交互、工業物聯網等新型業務的快速發展。因此,5G儼然已經成為當前移動通訊產業的關注焦點。未來的5G系統將著眼于全頻段,即不僅局限於低頻段(6GHz及以下頻段),也將考慮毫米波頻段。而天線作為移動通訊的重要組成部分,其研究與設計對移動通訊起著至關重要的作用。 5G帶來的最大改變就是用戶體驗的革新:華為Mate30系列手機內部整合了21根天線,不僅支援5G,還要支援4G、3G、NFC、GPS、Wi-Fi、藍牙等無線技術。在這21跟天線中,5G使用了14根,這也揭示了5G新的通訊架構下,手機終端天線發展真正的技術需求。在終端設備中信號品質的優劣直接影響著用戶體驗,所以,5G終端天線的設計必將成為5G部署的重要環節之一。 3GPP把5G頻段分為FR1頻段和FR2頻段(圖1),其中FR1的頻段通常被稱為Sub-6G頻段,範圍為450MHz~6GHz,FR2頻段為24.25GHz~52.6GHz,通常被稱為毫米波頻段。毫米波頻段的優勢是具備大量的可用頻譜頻寬、波束窄、方向性好、頻段許可獲取成本低。借助于先進的毫米波自我調整波束賦型和波束跟蹤技術,可以確保在真實環境中毫米波終端與基地台實現穩健的行動寬頻通訊。 圖1 5G頻段分成Sub-6GHz與毫米波兩個群組 採用5G初級階段的NSA組網方式,5G網路與4G網路並存,而5G 設備要達到更高速、穩定、低時延等要求則依賴於以下幾個因素: .更多頻段 .多個頻段之間的載波聚合技術 .大規模MIMO等技術 當前手機終端天線淨空普遍壓縮至2mm左右,而終端天線設計中既要兼顧sub6G與毫米波頻段的多頻段需求,又要支援MIMO天線技術,多頻帶CA技術實現場景需求,這些技術的引入都對5G手機終端設計研發提出了高難度的挑戰。 在NSA組網模式下,4G頻段天線與5G頻段天線並存;3GPP中,4×4 MIMO天線作為強制入網要求。5G終端產品內的天線數目激增,面對這麼多天線,天線效率、天線共存、天線佈局等問題亟待研究解決,天線設計面臨著重大挑戰。 其次,在5G通訊中,低頻的頻譜資源終歸是有限的,毫米波應用的潛力巨大,毫米波具有極寬的絕對頻寬,提高通道容量和資料傳輸速率的毫米波技術成為了未來5G通訊關鍵技術之一。但毫米波信號介質和輻射損耗較大,如何減少毫米波在終端內的損耗,確保毫米波更好的傳輸特性是工程師要面臨的一個挑戰。 最後,5G手機中集成多種晶片模組,CPU、射頻模組、基帶晶片、螢幕都是功耗與發熱的大戶,而5G晶片的計算能力要比現有的4G晶片高至少5倍,功耗大約高出2.5倍。並且手機的散熱好壞不僅僅影響用戶體驗,同時影響手機內部器件工作狀態,這使得5G手機的散熱技術研究面臨重大挑戰。 六大關鍵技術應對5G天線設計挑戰 為了滿足5G下行峰速20 Gbps,需要提供最大100 MHz的傳輸頻寬,為了滿足大頻寬連續頻譜的稀缺,在5G通訊中採用載波聚合(CA)來解決。但是如果發送和接收路徑之間的隔離度或者交叉隔離不足,多個頻段的無線RF信號可能會相互干擾,則CA應用中會出現靈敏度降低(Desense)問題。 所以,5G手機終端的Desense問題會比之前更為複雜,需要對Sub6G頻段與毫米波頻段共存狀態下對Desense問題根因分析,提前應對信號干擾問題。以下將介紹六種應對5G手機天線設計挑戰的關鍵技術。 模型處理與前處理 目前市面上5G手機大多採用NSA組網架構,相容4G通訊與5G通訊。相對於毫米波頻段,sub 6G頻段集中在2.5GHz—6GHz,sub 6G頻段天線和4G頻段天線調試方法類似,在當前流行的金屬邊框、全面屏手機內容易實現,天線設計形式採用PIFA天線+寄生形式,傳統的FPC天線(圖2)或者LDS天線都可以勝任。 圖2 FPC天線和支架 而在終端天線設計過程中,經常會出現跨領域協作的問題,不同領域的模型側重點和建模演算法不一致,外界導入的模型通常有面破損、線段不連續等問題,天線工程師經常耗費大量精力來對導入的結構件進行模型修復以及天線pattern建模。由於對建模要求不同,天線工程師拿到的結構模型通常無法滿足需求,需要多次跨部門多次溝通才能滿足需求,影響終端天線的設計進度。所以天線工程師迫切需要一種能快速對導入模型快速修復、建模等操作,並且不需要花太多精力去學習的軟體。 應對這種情況,ANSYS提供了前處理模組SpaceClaim來進行模型修復、修改等功能,大大提高天線工程師的開發效率。 ANSYS SpaceClaim是非常強大的幾何建模和修復處理軟體,並且提供了非常易用的中文交互介面。它基於直接建模思想,提供一種全新的CAD幾何模型的交交互操作模式,在集成工作環境中使設計人員能夠以最直觀的方式進行工作,可以輕鬆地對模型進行操作,無須考慮錯綜複雜的幾何關聯關係,並且提供了高級的實體建模、特徵編輯、裝配、分組功能。介面方面可以直接讀取主流CAD軟體模型,並支援Parasolid,ACIS、STEP、IGES等中間格式模型檔。 對於模型處理和修復,SpaceClaim能夠快速的完成對細小特徵的自動檢查、刪除、模型中面的自動抽取等,並具有一鍵式的檢查和修復功能。另外,提供的布耳運算、倒角、印痕、抽殼、抽中面以及參數化建模等功能,可以快速的説明工程師完成複雜模型向有限元模型的轉化工作。 毫米波天線設計 5G行動通訊技術中,低頻的頻譜資源終歸是有限的,毫米波應用的潛力巨大,未來運營商可以利用5G低、中、高頻段三層組網,1GHz以下頻段做覆蓋層,Sub 6G做容量層,毫米波做熱點覆蓋的高容量層,建成一張全國性的廣覆蓋、大容量的5G網路。毫米波相比於Sub 6GHz的時延更短,是Sub 6G頻段的四分之一。由於具有極寬的絕對頻寬,可在很大程度上提高通道容量和資料傳輸速率的毫米波技術成為了未來5G移動通訊關鍵技術之一。 相比於4G無線網路的寬範圍覆蓋,5G無線網路的特點是天線波束實現波束指向性,波束成型可以限制波束在很小的範圍內,因此可以降低干擾從而有效降低發射功率。多天線技術帶來了更多的空間自由度,因此使通道的反應更加精准,從而降低了各種隨機突發情況通道性能的降低。 要實現波束指向性與波束跟蹤能力,需要使用相位控制陣列技術。通過相位控制陣列可用于生成輻射方向圖及用以控制輸入信號,進而解決毫米波覆蓋問題。所以,相控陣技術,包含相位控制陣列波束成型(圖3)與相位控制陣列波束切換(圖4),對於在終端設備中採用毫米波天線的重要性不言而喻。 圖3 相位控制陣列波束成形 圖4 以相位控制陣列技術實現波束切換 而為了將毫米波相控陣天線裝進手機終端產品中,毫米波天線實現形式也有了突破。目前毫米波天線陣列的實現的方式可分為AoC(Antenna on Chip)、AiP(Antenna in Package)兩種(圖5)。其中AoC天線將輻射單元直接整合到射頻晶片的後端,該方案的優點在於,在一個面積僅幾平方毫米的單一模組上,沒有任何射頻互連和射頻與基頻功能的相互整合。考慮到成本和性能,AoC技術更適用於較毫米波頻段更高頻率的太赫茲頻段(300GHz~3000GHz)。 圖5 AoC天線與AiP天線 而AiP是基於封裝材料與工藝,將天線與晶片集成在封裝內,實現系統級無線功能的技術。AiP技術利用矽基半導體工藝整合度提高,兼顧了天線性能、成本及體積,是近年來天線技術的重大成就及5G毫米波頻段終端天線的技術升級方向。 目前毫米波天線在手機終端產品中的應用,面臨著天線性能與製程技術的挑戰。相位控制陣列天線需要進行波束掃描,天線各通道處於不同相位的狀態,高頻率毫米波經歷較高的介質、材料損耗和衰減,一系列天線元件協同工作後,通過幅相加權技術來實現波束掃描功能,通過將信號聚合形成波束,以擴展其覆蓋範圍。而相位控制陣列天線中所整合的元件,增加了終端內部的占用空間,如何保證相控陣天線性能是毫米波天線的關鍵技術。 此外,毫米波波長短,天線單元結構複雜、疊層結構、垂直對位元精度影響,就會導致較大的相位差,這就給天線毫米波元件、饋線的設計和加工帶來巨大的困難。因此,毫米波天線的關鍵技術還包括保證天線單元及相關器件的加工精度。 HFSS是功能強大的任意三維結構電磁場全波模擬設計工具,是公認的業界標準軟體,它採用有限元法對任意三維結構進行電磁場模擬,模擬精度高,可用於精確的電磁場模擬和建模,國內有廣泛的應用,它擁有功能強大的三維建模工具,能夠方便地建立任意的三維結構,支援所有射頻和微波材料,實現元件的快速精確模擬(圖6)。 圖6 HFSS中採用的模擬方法 HFSS採用了自動匹配網格剖分及加密、切線向向量有限元、ALPS(Adaptive Lanczos Pade Sweep)等先進技術,使工程師們可以非常方便地利用有限元素法(FEM)對任意形狀的三維結構進行電磁場模擬,而不必精通電磁場數值演算法。HFSS自動計算多個自我調整的解決方案,直到滿足用戶指定的收斂要求值。其基於麥克斯韋方程的場求解方案能精確模擬所有高頻性能。 HFSS中可實現天線布局設計中的參數掃描,參數優化,敏感度分析,統計分析等精細化設計的設計空間探索功能,結合高效能運算技術,能對毫米波天線進行天線性能快速優化、關鍵尺寸敏感度分析。通過敏感度分析可以分析天線性能的關鍵尺寸影響,在製造中對關鍵尺寸進行精度把控,是提高產品良率,保證產品性能的有效手段。 場路協同模擬 終端5G毫米波天線採用了AiP技術進行天線設計,整個天線內部需要將天線、射頻前端模組以及相位控制陣列結構整合封裝,封裝中天線與射頻模組的結合需要精確模擬分析阻抗匹配。 在5G毫米波的研究過程中,後端電路與天線匹配以及堆疊影響,是毫米波天線開發的關鍵技術。針對AiP天線設計,我們可以使用ANSYS HFSS + Circuit Design來進行有源天線模擬。在Circuit Design中對射頻電路進行原理圖搭建與模擬。其中,軟體中內置有全面的RF器件並且支援對HFSS中求解的3D模型的動態連結,從而能建立準確、完善的RF電路。在Circuit...
0

5G基礎建設RF前端2025年規模達25.2億美元

產業研究機構Yole Développement(Yole)發表最新研究指出,電信基礎設施的射頻前端(RF FE)市場規模在2018年達到14.7億美元,預計到2025年將達到25.2億美元。在全球扁平化的電信產業中,RF FE市場在2018年至2025年期間呈穩定成長,在此期間的年複合成長率為8%。 2020年將進入市場的5G無線通訊將成為下一個行動技術標準。隨著許多創新技術的發展,新系統的建置對射頻產業產生強烈影響,因此部署了支援特定協議和操作模式的新基礎架構,例如大規模MIMO、波束成形、波束控制、載波聚合等。 目前仍有超過75%的5G天線、射頻技術相關專利正在申請中,因此Yole認為,未來幾年還會有很多變化。三星、Intel、愛立信和華為已開始將其產品組合擴展到全球。三星和英特爾似乎是目前在限制其主要競爭對手的專利活動和經營自由方面處於最佳地位的兩個領導者。而GaN、GaAs、SiGe或RF-SOI等其他平台在不久的將來會顯著成長。 在此問題上,最有趣的動態之一是GaAs的發展。隨著主動式天線系統(Active Antenna System, AAS)可能成為主流,將需要更多數量的低功率寬頻功率放大器以及諸如波束形成器之類的新元件。起初這些元件主要採用GaAs製程,尤其是出於性能方面的考量。當市場成長到足以被視為一個利基市場,其他技術如RF-SOI或SiGe有望取代GaAs,就像在手機產業取代GaAs一樣。砷化鎵將成為主動天線模組的過渡平台。  
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -