- Advertisement -
首頁 標籤 深度學習

深度學習

- Advertisment -

3D感測/機器視覺強強聯手 AI升級智慧製造商機無限

AI人工智慧讓智慧製造能力再上一層樓,而應用已久的機器視覺,亦從成熟的光學檢測AOI,蛻變為內含深度學習(Deep Learning)技術的電腦視覺,搖身一變成為智慧製造的核心技術,影像與視訊內容的自動擷取、處理、分析與應用更加迅速、普遍與成熟。這樣的轉變不僅展現在生產效率的提升上,更可以進一步精簡人力成本,未來AI系統甚至可以針對機台的問題進行自我檢測,分析問題與成因,然而這僅僅是十八般武藝的開端。 近來,許多新興技術發展並與機器視覺結合,進一步擴大了其功能與應用範疇,3D感測技術包括飛時測距(Time of Flight, ToF)、立體雙目視覺(Stereo Vision)、結構光(Structured Light)等技術可以建立三維感測資訊,尤其測距應用的延伸,將使電腦視覺的功力不斷提升,本活動介紹機器視覺技術架構與應用最新動態,加上多個感測技術的加持,並剖析其與AI結合的發展與應用趨勢。 機器視覺助智慧製造一臂之力 而製造業從工業4.0口號被打響以來,製造系統從自動化進入智慧化的另一個全新的發展境界,機器視覺(Machine Vision)/電腦視覺(Computer Vision)就是達成此目標非常關鍵的技術。倢恩科技研發部經理邱威堯(圖1)提到,導入機器視覺可以使傳統製造業產線的生產方法更具彈性與可變性,並改善作業人員工作環境,遠離危險惡劣的工作流程。使用機器視覺的生產線,讓產品從人工檢測進步到自動品質管理,可增進品管重現性/一致性,以達成高度品質管制,降低人員因疲勞或情緒不佳誤判所造成的損失,同時讓檢測數據數值化,自動產生統計報表以便於管理與決策分析。 圖1 倢恩科技研發部經理邱威堯提到,導入機器視覺可以使傳統製造業產線的生產方法更具彈性與可變性,並改善作業人員工作環境。 機器視覺的基本要點包括:檢測(Inspection)、物件識別(Object Recognition)、量測(Gauging)、機器導引與定位(Machine Guiding and Positioning)。 檢測Inspection 利用機器視覺技術自動檢驗製程中工業產品之瑕疵,例如印刷電路板上的線路是否短路、斷路,半導體晶圓之表面缺陷及LCD面板之缺陷等。 物件識別Object Recognition 用於確認物件的身分,例如車牌辨識、條碼辨識、IC元件之光學字元辨識(OCR)及鍵盤檢視、人臉辨識、指紋辨識、瑕疵分類等。 量測Gauging 以機器視覺技術進行非接觸式的量測,例如工件之尺寸、夾角、真圓度及印刷電路板之線寬等。 機器導引與定位Machine Guiding and Positioning 利用機器視覺引導自動化機器之路徑,例如引導銲接機器人之銲道,無人搬運車之行進軌跡;亦可用於決定目標物位置,如SMT、PCB自動裝配作業的定位與機器人的行走路徑等。 機器視覺影像處理要點 進入作業程序後,機器視覺系統針對擷取到的影像進行處理則是另外一個重點,邱威堯進一步說明,影像強化、影像分割、影像編碼、影像還原等為主要的技術。影像強化是使處理過的影像比原始影像更適合於某一特殊應用,方式包括空間域(Spatial Domain)與頻率域(Frequency Domain)。影像分割則是凸顯出影像中感興趣的部分。 影像編碼就是使用較少的位元來顯示一幅影像,壓縮是最常見的方法。影像還原則是改善或重建一幅遭到破壞的影像,邱威堯說,影像還原技術通常需要大量運算時間,且還原後的效果不見得可以接受,建議由取像環境、設備與技術來改善影像的品質。 機器視覺硬體選擇無唯一解 在機器視覺硬體部分,主要由打光、鏡頭與相機組成。邱威堯指出,打光是機器視覺中非常困難的一部分,需要許多直覺與實驗,而打光技術也無通則,但對於特定應用場合已有經驗可循,而打光的方法是根據待測物的光學特性來決定,打光的目的則包括,取得與強化待測物中有興趣之特徵,使前景與背景明顯不同,強化訊噪比,以得到更高品質的影像,凍結移動中物體的運動並去除鏡反射(Specular Refection)等。 而打光的方式則分為正向打光、背向打光與結構打光。並可再進一步細分為擴散式正向打光、直向式正向打光、低角度斜向打光、同軸打光、擴散式背向打光、遮背式背向打光等多種,端視需要的效果而定。光源部分則以人工光源最常用,種類包括白熾燈的鎢絲燈泡、鹵素燈;放電燈的螢光燈、水銀燈、高壓鈉氣燈、複金屬燈、氙氣燈;固態光源的LED與固體雷射。其中,近年在實務應用上LED燈儼然已是主流。 另一個重點就是鏡頭,邱威堯強調,這部分的選擇同樣沒有最佳解,端視需求與使用者掌握的資源而定,選擇的要素包括視野、焦距、工作距離、相機底座、相機格式(感光元件尺寸)、景深、光圈值、相機型式等。以景深為例,其代表聚焦清晰的範圍,長景深表示聚焦清楚範圍大,短景深表示聚焦清楚範圍小,一般景深可以透過縮小鏡頭光圈來增加,但是照明的亮度也要相對提升,原則上要避免出現短景深的情況,以追求長景深為目標。 3D感測加值機器視覺 3D感測技術並不是全新的技術,由於iPhone X的人臉辨識解鎖應用,讓市場大為驚艷,帶動的發展熱潮逐漸滲透到不同領域。目前主要技術為立體雙目視覺、結構光與飛時測距,艾邁斯半導體(ams)資深應用工程師湯治邦(圖2)表示,這三個技術都需要搭配光源,現階段主流光源是垂直腔體表面雷射(VCSEL),並使用不可見的紅外光,波長850nm與940nm為主,因有極少部分人可看見850nm的紅外光,所以近年940nm使用比例逐漸提升。 圖2 艾邁斯半導體資深應用工程師湯治邦表示,飛時測距、立體雙目視覺、結構光技術特性有些差異,造成不同應用與需求各有優勢。 發光源的部分,除了熱門的VCSEL之外,LED與邊射型雷射(Edge Emitters Laser, EEL)都是常見的光源,以技術特性來深入比較,湯治邦指出,VCSEL雷射光的光線集中,LED則呈現散射方式,因此VCSEL波長範圍穩定,可產生波長最精準的光線,操作溫度最高可達200℃,溫度特性比LED與EEL優異,製造成本與半導體製程的簡易度也有相對優勢,是該技術受到高度注目的原因。 此外,主流的三個3D感測技術,技術特性有些許差異,造成不同應用與需求下各有優勢,立體雙目是由兩個攝影機分別擷取影像,理論與人眼相似,透過三角函數可以測知物體的深度,與其他兩個技術相較由於感測元件技術成熟成本較低,但模組體積較大、耗電量較高,也易受環境變化影響,如天候昏暗就會影響感測品質與準確性。 因為iPhone...
0

加快邊緣運算步伐 Intel推全新視覺加速器方案

英特爾(Intel)積極拓展邊緣運算版圖,於近日發布全新視覺加速器設計產品(Intel Vision Accelerator Design Products),強化邊緣裝置人工智慧(AI)推論與分析能力。此一解決方案包含Intel Movidius視覺處理器與Intel Arria 10 FPGA,皆以OpenVINO軟體工具套件為基礎,提供開發者在多種Intel產品中使用進階的神經網路效能,在物聯網裝置中運行更具成本效益的即時影像分析和智慧化功能。 為了降低雲端運算工作負載,實現更多創新應用,邊緣運算需求與日俱增,應用開發商與半導體業者皆積極將深度學習或機器學習導入前端設備,希望使前端裝置也有人工智慧的能力,而這過程中也有許多挑戰須克服。 英特爾資深副總裁暨物聯網事業群總經理Tom Lantzsch表示,以往企業在導入深度學習技術上遇到許多困難,不論交通運輸、智慧城市、健康照護、零售與製造業,都需要專業知識、種類廣泛的多樣化裝置與具擴充性的解決方案,以進一步發展深度學習。而新推出的視覺加速器設計產品可提供更多選擇與彈性,加速AI邊緣運算發展,以產出更多即時性資訊。 據悉,新發布的視覺加速器設計產品運作方式,是將AI推論的工作負載轉移至Movidius視覺處理晶片陣列,或高效能Intel Arria 10 FPGA的專屬加速卡上;且開發者可透過OpenVINO工具套件,將Intel CPU與Intel內建GPU上的深度學習推論應用與設計成果,輕易延伸至這些全新的加速器設計之中,藉此節省時間與費用。 英特爾指出,用此一視覺解決方案的企業,不論是在資料中心、現場部署伺服器或於邊緣裝置內採用深度學習人工智慧應用,深度學習推論加速器皆可擴充至其需求程度。 此外,英特爾也透露,相較於Discrete GPU,新推出的視覺加速器產品優勢在於封裝小,可用於體積小的邊緣設備,且功耗更低(約10~20瓦);同時為了因應市場多元的應用,不僅是新發布的Movidius視覺處理器和Arria 10 FPGA以OpenVINO為基礎外,其餘產品線如XEON、CORE i7和ATON等,也都支援OpenVINO,讓開發者依據自身需求選擇合適的晶片,打造具深度學習功能的邊緣裝置。
0
- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -