- Advertisement -
首頁 市場話題 功率半導體現快充商機 GaN挾高效能進軍消費市場

功率半導體現快充商機 GaN挾高效能進軍消費市場

- Advertisement -

氮化鎵(GaN)成為電子產業的熱門技術,圍繞氮化鎵的產品、可靠性和解決方案是目前業界關注焦點。其中2020年是消費類充電器,特別是快充市場快速發展的重要時間。隨著市場不斷成熟和趨勢日益明確,消費者對小尺寸和高功率快速充電器的需求越來越大,市場前景可期。GaN快充的其中兩個重要技術指標就是高功率密度和高效能。高功率密度呈現在同一額定功率下的小體積,而高效能則表現於節能環保和更低的工作溫度上。氮化鎵零組件由於具有極高的開關速度及同一晶圓下的小導通電阻,使得更高的效能和開關頻率快速充電成為可能。

2020年採用氮化鎵零組件的快充技術進入快速發展階段,根據產業調查顯示,作為消費類電子指標的手機產業中,目前已經有華為、小米、OPPO等多個知名品牌推出了使用氮化鎵的快充產品。電商方面,更有多達20個品牌先後推出氮化鎵快充產品。本文將探討充電器的技術發展趨勢和氮化鎵功率零組件在高功率、小型化需求下的巨大市場前景。

圖1總結了兩個常見的功率段下,充電器的主要電路和功率密度以及效能指標要求。針對75W以下(30W~65W)的充電器,目前主要電路為單端準諧振(Quasi-Resonant,QR)返馳或主動鉗位返馳(Active Clamp Flyback, ACF)兩種電路。最高效能指標要求接近94%,功率密度要求20W/in3。而高於75W(100W~300W)的充電器,目前基本採用兩級電路方案,前級是功率因數校正電路(PFC),後級為LLC諧振或其他隔離DC/DC電路。最高效能目標要求達到95%,功率密度要達到22W/in3以上。與傳統矽(Si)基功率零組件相比,新材料的氮化鎵零組件具有更高的性能,為充電器,特別是快充產品的小型化和高效能帶來新的可能。

圖1 充電器市場拓撲電路和技術指標

氮化鎵效能高於矽基零組件

氮化鎵零組件由於其寬能隙特點,它的主要優勢在於高開關速度和低開關損耗上。另外,相比同一晶圓大小的功率零組件,氮化鎵功率零組件具有低於矽基零組件的通態電阻,因此系統層面可以帶來更高效能、低工作溫度和小體積的特點,非常適用於小體積、高功率密度的充電器產品設計。總結已量產的氮化鎵功率零組件與目前市場上較優的矽基MOSFET進行比較,可以發現氮化鎵零組件在具有較低的通態電阻下,同時兼具更低的驅動電荷Qg、漏柵極電荷Qgd和輸出能量Eoss,使得高頻率高效能成為可能。

圖2是典型的準諧振(QR)返馳電路拓撲,由於它的低成本和較高可靠性,多用於充電器電路中。在電路中為了提高充電器的功率密度,一個直接的方法就是增加開關頻率來降低變壓器等元件的尺寸。然而提高開關頻率以後,必然將帶來額外的零組件開關損耗和升溫。QR返馳電路主要有兩個與開關頻率相關的損耗,頻率越高相應損耗越大:

1.在功率零組件關斷瞬間原邊電流達到峰值電流,功率零組件在硬關斷過程關閉,存在電壓電流交疊的關斷損耗。可以由零組件驅動電荷Qg和漏柵極電荷Qgd參數來評估。

2.在零組件開通時刻,由於此時電流基本為零,因此不存在開通電壓電流交疊開關損耗,但QR返馳電路在高壓交流電壓輸入(230Vac)條件下零組件開通瞬間漏源極電壓並不為零,所以存在由於內部寄生電容放電產生的放電損耗。它可以由寄生電容對應的輸出能量Eoss參數來評價。

圖2 典型的準諧振(QR)反激電路拓撲和開關過程中的損耗

評價一個功率零組件特性重要指標是品質因數(Figure Of Merit, FOM),它綜合評估零組件的通態和開關特性,越小的FOM代表越優的零組件性能。其中Input FOM表明了零組件在同等通態電阻下,零組件的開關過程中電壓電流交疊損耗,它是硬開關電路評估零組件最重要的指標,例如QR返馳電路的關斷損耗就可以用這個指標來比較。如圖3所示,在相近通態電阻(50~60毫歐)條件下,氮化鎵零組件的漏柵極電荷Qgd僅為矽基零組件的6%,導致開關過程中氮化鎵零組件電壓電流交疊損耗遠小於矽基零組件,約為矽基零組件的五分之一。

圖3 氮化鎵和矽基零組件總電荷比較,以及交疊開關損耗比較

QR Flyback FOM表明QR返馳電路中在同等通態電阻下零組件在200V下寄生電容產生的放電損耗,這裡電壓條件為200V是因為,當輸入交流電壓為高壓230Vac條件下,QR返馳電路功率零組件漏源極電壓約為200V條件下開通,將在此條件下產生寄生電容影響的開通損耗。圖4可以看到,在相近的通態電阻下,氮化鎵零組件的Eoss僅為矽基零組件的60%左右,導致開通電容放電損耗遠低於業界良好的矽基零組件。因此總結分析,氮化鎵零組件在各方面零組件性能上均優於矽基MOSFET零組件,適用於高頻化高效應用,實現優異性能。

圖4 氮化鎵和矽基零組件的輸出能量Eoss比較

產品應用及可靠性測試

從研發工程師的角度分析,在研發充電器產品時主要關注以下三個方面:第一是產品的可靠性,代表零組件在產品壽命中具有高的可靠性和低的失效率,滿足產品的設計壽命;第二是低成本,除了零組件自身成本以外,還需要考慮整體的BOM成本和生產成本;第三是產品能夠快速推向市場,縮短產品設計周期。

例如廠商GaN Systems一直致力於氮化鎵功率零組件的研發和生產,目前已經擁有完整的產品應用領域、高效工作電流和優良封裝的氮化鎵產品線。其中針對快充市場,GaN Systems推出650V 5×6毫米PDFN封裝的氮化鎵零組件,通態電阻從150毫歐(GS-065-011-1-L)到450毫歐(GS-065-004-1-L),可以用於30W到300W的充電器產品中。可靠性方面,GaN Systems按照JEDEC標準的產品認證流程,具有部分測試高於JEDEC標準的測試項目和延長測試時間的倍數。同時基於氮化鎵零組件自身特性,增加了多個額外可靠性測試項目,比如高溫開關動態壽命測試,以確保氮化鎵產品的可靠性和工作壽命。

EZDrive驅動方案

對於增強型氮化鎵零組件驅動,驅動電壓為6V左右,關斷電壓可以為0~10V,而傳統的帶驅動的充電器控制IC輸出驅動電壓一般為12V,因此為了和控制IC的驅動電壓配合,需要進行驅動電壓的電平轉換。其中GaN Systems提出了低成本的EZDrive電平轉換電路,透過簡單的四個小分離元件(RUD/CUD/ZDUD1/ZDUD2)實現驅動電壓的轉換,採用該電路後,氮化鎵零組件驅動實測波型VGS沒有任何過充和干擾振盪(圖5)。

圖5 EZDrive電平轉換電路和驅動波形

使用EZDrive電平轉換電路配合氮化鎵零組件驅動的另一個優勢在於,其驅動電阻Ron和Roff外置(圖6),可以透過驅動電阻來控制漏源極驅動電壓斜率dv/dt進而優化EMI設計。和其他單晶片整合驅動GaN方案相比,氮化鎵零組件加上EZDrive電平轉換電路具有更強的靈活性,並充分利用控制IC內部整合的驅動,實現低成本驅動氮化鎵零組件,同時由於驅動電阻外置,可以控制開關dv/dt斜率達到優化電磁干擾(EMI)設計的目的。

圖6 EZDrive電平轉換電路控制漏源極電壓上升和下降斜率dv/dt

氮化鎵充電器解決方案

採用氮化鎵功率零組件,能夠為充電器特別是快充產品的小型化、高效能、低溫度和低成本帶來可能,將會帶來新的市場機會。為了加速氮化鎵產品的設計與開發,GaN Systems推出針對快充等充電器市場的解決方案,方案覆蓋了30W到300W的功率等級,包含多個充電器常見功率和電路拓撲(準諧振QR返馳/主動鉗位返馳ACF/LLC諧振/功率因數校正PFC等),這些方案都採用了氮化鎵零組件實現高效能和功率密度。圖7是整合650V 5×6毫米PDFN封裝的氮化鎵零組件和EZDrive驅動電平轉換電路的子板(Daughter Card)。可以利用子板快速取代TO220等封裝矽基MOSFET零組件,以評估氮化鎵零組件在性能上的優勢。其中EZDrive電平轉換電路利用四個小分離元件(R1/C1/D2/D3)實現氮化鎵零組件與傳統驅動器或控制器IC的低成本相容。

圖7 氮化鎵5×6毫米PDFN零組件及EZDrive電平轉換電路小子板參考設計

65W高功率密度(18.5W/in3)PD方案是針對快充市場新推出的整體解決方案(圖8),其攜帶了150毫歐氮化鎵零組件(GS-065-011-1-L),採用準諧振電路達到低成本、高頻率解決方案。方案最高效能接近94%,滿足CoC V5 Tier2的效能和待機功耗要求,帶殼高殼溫低於65度以下。除了兩層PCB板低成本設計、高效能和高功率密度之外,方案通過安規標準及EN55032 B類EMI傳導和輻射的全面測試,支援USB-C多種協定輸出,協助使用者縮短產品設計周期,產品快速推向快充消費市場。

圖8  65W PD快充參考設計

如圖9所示,300W高功率密度AC/DC充電器方案使用GS66504B氮化鎵零組件,電路採用同步升壓PFC和LLC諧振電路中,實現了最高95%的效能,34W/in3的功率密度,滿足EN55032 B類EMI傳導要求。其中LLC諧振軟開關電路開關頻率達到500kHz,展現氮化鎵功率零組件在高頻軟開關電路下的獨特優勢。

圖9  300W充電器參考設計

(本文作者為GaN Systems技術行銷經理)

相關文章

- Advertisement -
- Advertisement -

最新文章

- Advertisement -

熱門文章

- Advertisement -

編輯推薦

- Advertisement -