Octal Double-Data-Rate PSRAM

Specifications

- Single Supply Voltage
- $V_{D D}=1.62$ to 1.98 V
- $V_{D D Q}=1.62$ to 1.98 V
- Interface: Octal SPI with DDR OctaRAM mode, two bytes transfers per one clock cycle
- Performance: Clock rate up to 200 MHz , $400 \mathrm{MB} / \mathrm{s}$ read/write throughput
- Organization: $64 \mathrm{Mb}, 8 \mathrm{M} \times 8$ bits with 1024 byte page size
- Column address: AYO to AY9
- Row address: AX0 to AX12
- Refresh: Self-managed
- Operating Temperature Range
- $\mathrm{Tc}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (standard range)
- $\mathrm{Tc}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ (extended range)
- Maximum Standby Current
- $300 \mu \mathrm{~A} @ 105^{\circ} \mathrm{C}$
- $200 \mu \mathrm{~A} @ 85^{\circ} \mathrm{C}$
- $100 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- $30 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$ (Half Sleep Mode with data retained)

Features

- Low Power Features
- Auto Temperature Compensated SelfRefresh (ATCSR) by built-in temperature sensor
- Ultra Low Power Half Sleep mode with data retained
- Software Reset
- Reset Pin Available
- Output Driver LVCMOS with programmable drive strength
- Data Mask (DM) for write data
- Data strobe (DQS) enabled highspeed read operation
- Register Configurable write and read initial latencies
- Write Burst Length
- maximum 1024 Bytes
- minimum 2 Bytes
- Wrap \& Hybrid Burst in 16/32/64/128 lengths.
- Linear Burst Command (wraps at page boundary)

Table of Contents

1 Table of Contents

1 Table of Contents 2
2 Package Information 3
3 Package Outline Drawing 4
4 Ordering Information 5
5 Signal Table 6
$6 \quad$ Power-Up Initialization 7
6.1 Power-Up Initialization Method 1 (via. RESET\# pin) 7
6.2 Power-Up Initialization Method 2 (via. Global Reset) 8
7 Interface Description 9
7.1 Address Space 9
7.2 Burst Type \& Length 9
7.3 Command/Address Latching 9
7.4 Command Truth Table 10
7.5 Read Operation 11
7.6 Write Operation 13
7.7 Control Registers 14
7.8 Deep Power Down Mode. 19
7.9 Half Sleep Mode 21
8 Electrical Specifications: 22
8.1 Absolute Maximum Ratings 22
8.2 Pin Capacitance 22
8.3 Decoupling Capacitor Requirement 23
8.4 Operating Conditions 23
8.5 DC Characteristics 24
8.6 AC Characteristics 25
9 Change Log 27

2 Package Information

The APS6408L-OCHx is available in miniBGA 24 L package $6 \times 8 \times 1.2 \mathrm{~mm}$, ball pitch 1.0 mm , ball size 0.4 mm , package code "BA".

- Ball Assignment for MINIBGA 24L

$(6 \times 8 \times 1.2 \mathrm{~mm})(\mathrm{P} 1.0)(\mathrm{B} 0.4)$
Note:

1. Part Number APS6408L-OCH-BA for 64 Mb .
2. RFU: Reserved for future use, which is reserved for 2nd CE\#.
3. NC: No internal connection.

3 Package Outline Drawing

Package code "BA"

SYM.	DIMENSION (mm)		
	MIN.	NOM.	MAX.
A	-	-	1.20
A1	0.25	0.30	0.35
A2	-	0.79	-
b	0.35	0.40	0.45
D	7.90	8.00	8.10
D1	4.00 BSC		
E	5.90	6.00	6.10
E1	4.00 BSC		
SE	1.00 TYP		
SD	1.00 TYP		
E	1.00 BSC		

NOTE:

1. CONTROLIING DIMENSION:MILLIMETER.
2. REFERENCE DOCUMENT: JEDEC MO-207.
3.THEDIAMETER O FPRE-RELOW SOLDER BALLI $500.40 \mathrm{~mm} .(0.35 \mathrm{~mm}$ SMO)

4 Ordering Information

Table 1: Ordering Information

Part Number	Temperature Range	Max Frequency	Note
APS6408L-OCH	$\mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200 MHz	Bare die, SIP
APS6408L-OCHX	$\mathrm{Tj}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	200 MHz	Bare die, SIP
APS6408L-OCH-BA	$\mathrm{Tc}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	200 MHz	24 b Package
APS6408L-OCHX-BA	$\mathrm{Tc}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	200 MHz	24 b Package

5 Signal Table

All signals are listed in Table 2.
Table 2: Signals Table

Symbol	Type	Description	Comments
$V_{\text {DD }}$	Power	Core supply 1.8V	
$V_{\text {DDQ }}$	Power	IO supply 1.8V	
V $_{\text {SS }}$	Ground	Core supply ground	
Vssa $^{\text {A/DQ[7:0] }}$	Ground	IO	IO supply ground
DQS/DM	IO	DQ strobe clock during reads, Data mask during writes. DM is active high. DM=1 means "do not write".	
CE\#	Input	Chip select, active low. When CE\#=1, chip is in standby state.	
CLK	Input	Clock signal	
RESET\#	Input	Reset signal, active low. Optional, as the pad is internally tied to a weak pull-up and can be left floating.	

6 Power-Up Initialization

Octal DDR products include an on-chip voltage sensor used to start the self-initialization process. VDD and VDDQ must be applied simultaneously. When they reach a stable level at or above minimum $V_{D D}$, the device is in Phase 1 and will require 150μ s to complete its self-initialization process. The user can then proceed to Phase 2 of the initialization described in section 6.1.

During Phase 1 CE\# should remain HIGH (track VDD within 200mV); CLK should remain LOW.
After Phase 2 is complete the device is ready for operation, however Half Sleep entry and Deep Power Down (DPD) entry are not available until Half Sleep Power Up (tHSPU) or DPD Power Up (tDPDp) durations are observed.

6.1 Power-Up Initialization Method 1 (via. RESET\# pin)

The RESET\# pin can be used to initialize the device during Phase 2 as follows:

Figure 1. Power-Up Initialization Method 1 RESET\#

The RESET\# pin can also be used at any time after the device is initialized to reset all register contents. Memory content is not guaranteed. Timing requirements for RESET\# usage are shown below.

Figure 2. RESET\# Timing

6.2 Power-Up Initialization Method 2 (via. Global Reset)

As an alternate power-up initialization method, after the Phase $1150 \mu \mathrm{~s}$ period the Global Reset command can also be used to reset the device in Phase 2 as follows:

Figure 3. Power-Up Initialization Method 2 Timing with Global Reset

The Global Reset command resets all register contents. Memory content is not guaranteed. The command frame is 4 clocked CE lows. The Global Reset command sequence is shown below. Note that Global Reset command can be used ONLY as Power-up initialization.

Figure 4: Global Reset

7 Interface Description

7.1 Address Space

Octal DDR PSRAM device is byte-addressable. Memory accesses are required to start on even addresses ($\mathrm{A}[0]={ }^{\prime} 0$).

7.2 Burst Type \& Length

Read and write operations are always in wrap mode within $16,32,64,128$ or 1 K (see Table 8). Bursts can start on any even address. Write Burst Length has a minimum of 2 bytes (1 rising CLK and 1 falling CLK edge). Read has no minimum length. Both write and read have no restriction on maximum Burst Length as long as tCEM is met.

7.3 Command/Address Latching

After CE\# goes LOW, instruction code is latched on $1^{\text {st }}$ CLK rising edge. Row Access (RA) address is latched on the $3^{\text {rd }} \& 4^{\text {th }}$ edges ($2^{\text {nd }} C L K$ rising edge, $2^{\text {nd }}$ CLK falling edge), while Column Access (CA) address is latched on the $5^{\text {th }}$ $\& 6^{\text {th }}$ CLK edges ($3^{\text {rd }}$ CLK rising edge, $3^{\text {rd }}$ CLK falling edge).

	1st CLK		2nd CLK		3rd CLK	
Pin	$\stackrel{5}{5}$	L	-	L	-	L
A/DQ[7]	INST[7]	\times	rsvd.	RA[7]	CA[9]	rsvd.
A/DQ[6]	INST[6]	\times	rsvd.	RA[6]	CA[8]	rsvd.
A/DQ[5]	INST[5]	\times	rsvd.	RA[5]	CA[7]	rsvd.
A/DQ[4]	INST[4]	\times	RA[12]	RA[4]	CA[6]	rsvd.
A/DQ[3]	INST[3]	\times	RA[11]	RA[3]	CA[5]	CA[3]
A/DQ[2]	INST[2]	\times	RA[10]	RA[2]	CA[4]	CA[2]
A/DQ[1]	INST[1]	\times	RA[9]	RA[1]	rsvd.	CA[1]
A/DQ[0]	INST[0]	\times	RA[8]	RA[0]	rsvd.	CA[0]

During the Command/Address cycles (first three clocks) DQS/DM will be driven low by the PSRAM for all operations.

7.4 Command Truth Table

The Octal DDR PSRAM recognizes the following commands specified on the INST (Instruction) cycle defined by the Address/DQ pins.

Notes: 1) Default Burst Type set in Mode Register is 32 Byte Wrap

7.5 Read Operation

After address latching, the device initializes DQS/DM to " 0 from CLK rising edge of the $3^{\text {rd }}$ clock cycle (A1). See Figure 5 below.

Output data is available after LC cycles, as shown in Figure 6 \& Figure 7, LC is latency configuration code as defined in Table 5 and Table 6. When data is valid, $A / D Q[7: 0]$ and $D Q S / D M$ follow the timing specified in Figure 8. Synchronous timing parameters are shown in Table 15 \& Table 16

In case of internal refresh insertion, variable latency output data is delayed by (LCx2) latency cycles as shown in Figure 6. The $1^{\text {st }}$ DQS/DM rising edge after read pre-amble will indicate the beginning of valid data.

Figure 5: Synchronous Read

Figure 6: Variable Read Latency Refresh Pushout

Figure 7: Read Latency \& tDQSCK

Figure 8: Read DQS/DM \& DQ timing

7.6 Write Operation

A minimum of 2 bytes of data must be input in a write operation. In the case of consecutive short burst writes, tRC must be met by issuing additional CE\# high time between operations. Single-byte write operations can be performed by masking the un-written byte with DQS/DM as shown in Figure 10.

Figure 9: Synchronous Write Unmasked Example

Figure 10: Synchronous Write Masking Example

Figure 11: Write DQS/DM \& DQ Timing

7.7 Control Registers

Register Read is shown below. Register reads are always LC latency cycles. Register Address in command determines which Register is read from.

Figure 12: Mode Register Read

Figure 13: ID Register Read

Register Write is shown below. Register Writes are always 0 latency cycle.

Figure 14: Register Write

ID \& Mode Register mappings are shown in Table 3 \& Table 4.

Table 3: ID Register Table

Bit	Purpose	Settings
15	KBD	$0-$ Good Die $1-$ Known Bad Die
$14-13$	reserved	00
$12-8$	Row Address MSB	$01100-13$ row address bits (64M) $01101-14$ row address bits (128M)
$7-4$	Col Address MSB	$1001-10$ column address bits
$3-0$	Vendor	$1101-$ AP Memory

Table 4: Mode Register Table

Bit	Purpose	Settings
15	Deep Power Down Enable	$0-$ Deep Power Down Entry $1-$ Normal Operation (default)
$14-12$	Drive Strength	see Table 7
$11-8$		reserved
$7-4$	Latency Code	see Table 5\&6
3	Latency Type	$0-$ Variable Latency (default) $1-$ Fixed Latency
2	Burst Type	$0-$ Wrapped (default) $1-$ Hybrid Continuous
$1-0$	Burst Length	$00-128$ bytes $01-64$ bytes $10-32$ bytes (default) $11-16$ bytes

Table 5: Latency Configuration Codes MR[7:4]

VL Codes (MR[3]=0)			FL Codes (MR[3]=1)	Max Input CLK Freq (MHz)	
MR[7:4]	No Refresh (LC)	Refresh (LCx2)	(LCx2)	Standard	Extended
0000	3	6	6	66	66
0001	4	8	8	104	104
0010	5	10	10	133	133
0011	6	12	12	166	166
0100	7	14	14	200	200
0101	8 (default)	16	16	200	200
others	Reserved	-	-	-	-

Table 6: Operation Latency Code Table

Type	Operation	VL (default)		FL
		No Refresh	Refresh	
Memory	Read	LC	LCx2	LCx2
	Write	LC	LC	
Register	Read	LC	LC	
	Write	0		0

Table 7: Drive Strength Codes MR [14:12]

Codes	Drive Strength
$' 000$	100Ω
$' 001$	66Ω
$' 010$	50Ω
$' 011$	40Ω
$' 100$	33Ω
$' 101$	33Ω
$' 110$	25Ω
$' 111$	25Ω (default)

Table 8: Burst Type MR[2], Burst Length MR[1:0], \& Linear Burst

By default the device powers up in 32 Byte Wrap. In non-Hybrid burst (MR[2]=0), MR[1:0] sets the burst address space in which the device will continually wrap within. If Hybrid Burst Wrap is selected ($\operatorname{MR}[2]=1$), the device will burst through the initial wrapped Burst Length once, then continue to burst incrementally up to maximum column address (1K) before wrapping around within the entire column address space. Burst Length (MR[1:0]) can be set to $16,32,64 \& 128$ bytes.

MR[2]	MR [1:0]	Burst Length	Example of Sequence of Bytes During Wrap	
			Starting Address	Byte Sequence
$' 0$	$' 00$	128 Byte Wrap	4	$[4,5,6, \ldots 127,0,1,2, \ldots]$
$' 0$	$' 01$	64 Byte Wrap	4	$[4,5,6, \ldots 63,0,1,2, \ldots]$
$' 0$	$' 10$	32 Byte Wrap (default)	4	$[4,5,6, \ldots 31,0,1,2, \ldots]$
$' 0$	$' 11$	16 Byte Wrap	4	$[4,5,6, \ldots 15,0,1,2, \ldots]$
$' 1$	$' 00$	128 Byte Hybrid Wrap	2	$[2,3,4, \ldots 127,0,1], 128,129 \ldots 1023,0,1, \ldots$
$' 1$	$' 01$	64 Byte Hybrid Wrap	2	$[2,3,4, \ldots 63,0,1], 64,65,66, \ldots 1023,0,1, \ldots$
$' 1$	$' 10$	32 Byte Hybrid Wrap	2	$[2,3,4, \ldots 31,0,1], 32,33,34, \ldots 1023,0,1, \ldots$
$' 1$	$' 11$	16 Byte Hybrid Wrap	2	$[2,3,4, \ldots 15,0,1], 16,17,18, \ldots 1023,0,1, \ldots$

The Linear Burst Command (INST[5:0]=6'b10_0000) forces the current array read or write to do 2 K Byte Wrap. The burst continues linearly from the starting address and at the end of the page it wraps back to the beginning of the page. This special burst instruction can be used on both array writes and reads. A new command is needed to access a different page.

7.8 Deep Power Down Mode

Deep Power Down Mode (DPD) is a feature which puts the device in an ultra-low power state. DPD Mode Entry is entered by using Register Write to write a 0 into MR[15]. CE\# going high initiates the DPD Mode and must be maintained for the minimum duration of tDPD. The Deep Power Down Entry command sequence is shown below.

Figure 15: Deep Power Down Entry Write

Deep Power Down Exit is initiated by a low pulsed CE\# or RESET\#. After a CE\# DPD Exit, CE\# must be held high until the first operation begins (observing minimum tXDPD).

Figure 16: Deep Power Down Exit with CE\# (Read Operation shown as example)

After a RESET\# DPD exit, CE\# and RESET\# must be held high until the first operation begins (observing minimum tRCH).

Figure 17: Deep Power Down Exit with RESET\# (Read Operation shown as example)

Register values are retained in DPD Mode but memory content is not. However, if a RESET\# low is used to exit DPD, register values are also reset to defaults. tDPDp is minimum period between two DPD Modes (measured from DPD exit to the next DPD entry) as well as from the initial powerup to the first DPD entry.

7.9 Half Sleep Mode

Half Sleep Mode is a feature which puts the device in an ultra-low power state, while the stored data is retained. Half Sleep Mode Entry is entered by writing 8'hFO into MR6. CE\# going high initiates the Half Sleep mode and must be maintained for the minimum duration of tHS. The Half Sleep Entry command sequence is shown below.

Figure 18: Half Sleep Entry

Half Sleep Exit is initiated by a low pulsed CE\#. Afterwards, CE\# should be held high until the first operation begins (observing minimum tXHS).

Figure 19: Half Sleep Exit

8 Electrical Specifications:

8.1 Absolute Maximum Ratings

Table 9: Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Notes
Voltage to any ball except $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDQ}}$ relative to V_{SS}	VT	-0.4 to $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{DDQ}}+0.4$	V	
Voltage on V_{DD} supply relative to V_{SS}	V_{DD}	-0.4 to +2.45	V	
Voltage on $\mathrm{V}_{\mathrm{DDQ}}$ supply relative to V_{SS}	$\mathrm{V}_{\mathrm{DDQ}}$	-0.4 to +2.45	V	
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$	1

Notes 1: Storage temperature refers to the case surface temperature on the center/top side of the PSRAM.

Caution:

Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

8.2 Pin Capacitance

Table 10: Bare Die Pin Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Input Pin Capacitance	CIN		2	pF	VIN=0V
Output Pin Capacitance	COUT		3	pF	VOUT=0V

Note 1: spec'd at $25^{\circ} \mathrm{C}$.
Table 11: Package Pin Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Input Pin Capacitance	CIN		6	pF	VIN=0V
Output Pin Capacitance	COUT		8	pF	VOUT $=0 \mathrm{~V}$

Note 1: spec'd at $25^{\circ} \mathrm{C}$.

Table 12: Load Capacitance

Parameter	Symbol	Min	Max	Unit	Notes
Load Capacitance	C_{L}		15	pF	

Note 1: System C_{L} for the use of package.

8.3 Decoupling Capacitor Requirement

System designers need to take care of power integrity considering voltage regulator response and the memory peak currents/usage modes.

Figure 20: Decoupling Capacitor

8.3.1 Low ESR cap C1:

It is recommended to place a low ESR decoupling capacitor of $<=1 \mu \mathrm{~F}$ close to the device to absorb transient peaks.

8.3.2 Large cap C2:

During Half-sleep modes even though half-sleep average currents are very small (less than $100 \mu \mathrm{~A}$), device will internally have low duty cycle burst refresh for an extended period of time of a few tens of microseconds. These refresh current peaks are large. During this period if the system regulator cannot supply large peaks for several microseconds, it is important to place a $4.7 \mu \mathrm{~F}-10 \mu \mathrm{~F}$ cap to take care of burst refresh currents and replenish the charge before next burst of refreshes.

If required please contact AP Memory for further current peak details.

8.4 Operating Conditions

Table 13: Operating Characteristics

Parameter	Min	Max	Unit	Notes
Operating Temperature (extended)	-40	105	${ }^{\circ} \mathrm{C}$	1
Operating Temperature (standard)	-40	85	${ }^{\circ} \mathrm{C}$	

Note 1: Extended temp range of -40 to $105^{\circ} \mathrm{C}$ is only characterized; Standard test condition is -32 to $105^{\circ} \mathrm{C}$.

8.5 DC Characteristics

Table 14: DC Characteristics

Symbol	Parameter	Min	Max	Unit	Notes
$V_{\text {DD }}$	Supply Voltage	1.62	1.98	V	
V ${ }_{\text {doa }}$	I/O Supply Voltage	1.62	1.98	V	
$\mathrm{V}_{\text {IH }}$	Input high voltage	Vdod-0.4	V ${ }_{\text {dDa }}+0.2$	V	
VIL	Input low voltage	-0.2	0.4	V	
Voh	Output high voltage (Іон $=-0.2 \mathrm{~mA}$) $^{\text {a }}$	0.8 V DDQ		V	
Vol	Output low voltage (los=+0.2mA)		0.2 V ${ }_{\text {doa }}$	V	
ILI	Input leakage current		1	$\mu \mathrm{A}$	
Ito	Output leakage current		1	$\mu \mathrm{A}$	
ICC	Read/Write @13MHz		4	mA	2
	Read/Write @133MHz		16	mA	2
	Read/Write @166MHz		19	mA	2
	Read/Write @200MHz		22	mA	2
ISBext	Standby current (extended temp)		300	$\mu \mathrm{A}$	1,3
ISBstd	Standby current (standard temp)		200	$\mu \mathrm{A}$	3
ISBstdroom	Standby current (room temp)		100	$\mu \mathrm{A}$	3,4, 5
ISBstdhs	Standby current (half sleep $25^{\circ} \mathrm{C}$)		30	$\mu \mathrm{A}$	3,4,6,7
ISBstddpd	Standby current (Deep Power Down $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)		15	$\mu \mathrm{A}$	8

Note
1: Spec'd up to $105^{\circ} \mathrm{C}$.
Note 2: Current is only characterized.
Note 3: Without CLK toggling. ISB will be higher if CLK is toggling.
Note 4: Slow Refresh.
Note 5: Typical ISBstdroom 66uA.
Note 6: Current is only guaranteed after 150 ms into Half Sleep mode.
Note 7: Typical ISBstdhs 20uA
Note 8: Typical mean ISBstdopd 7uA at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$

8.6 AC Characteristics

Table 15: READ/WRITE Timing

		-7(133MHz)		-6(166MHz)		-5(200MHz)		Unit	Notes
Symbol	Parameter	Min	Max	Min	Max	Min	Max		
tCLK	CLK period	7.5		6		5		ns	
tCH/tCL	Clock high/low width	0.45	0.55	0.45	0.55	0.45	0.55	tCLK	
tKHKL	CLK rise or fall time		1.2		1		0.8	ns	
tCPH	CE\# high pulse width	15		18		20		ns	Clocking optional
tCEM	CE\# low pulse width		4		4		4	$\mu \mathrm{s}$	Standard temp
			1		1		1	$\mu \mathrm{s}$	Extended temp
tCEM	CE\# low pulse width	3		3		3		tCLK	
tCSP	CE\# setup time to CLK rising edge	2		2		2		ns	
tCHD	CE\# hold time from CLK falling edge	2		2		2		ns	
tSP	Setup time to active CLK edge	0.8		0.7		0.6		ns	
tHD	Hold time from active CLK edge	0.8		0.7		0.6		ns	
tDQSV	Chip enable to DQS output low	2	6	2	6	2	6	ns	
thZ	Chip disable to DQ/DQS output high-Z		6		6		6	ns	
tRC	Write Cycle	60		60		60		ns	
tRC	Read Cycle	60		60		60		ns	
tHS	Minimum Half Sleep duration	150		150		150		$\mu \mathrm{s}$	
tXHS	Half Sleep Exit CE\# low to CLK setup time	150		150		150		$\mu \mathrm{s}$	
tXPHS	Half Sleep Exit CE\# low pulsewidth	60		60		60		ns	
			4		4		4	$\mu \mathrm{s}$	Standard temp
			1		1		1	$\mu \mathrm{s}$	Extended temp
tDPD	Minimum DPD Duration	500		500		500		$\mu \mathrm{s}$	
tDPDp	Minimum period between DPD	500		500		500		$\mu \mathrm{s}$	
tXDPD	DPD CE\# low to CLK setup time	150		150		150		$\mu \mathrm{s}$	
tXPDPD	DPD Exit CE\# low pulsewidth	60		60		60		ns	
			4		4		4	$\mu \mathrm{s}$	
tPU	Device Initialization	150		150		150		$\mu \mathrm{s}$	
tRP	RESET\# low pulse width	1		1		1		$\mu \mathrm{s}$	
tRST	Reset to CMD valid	2		2		2		$\mu \mathrm{s}$	
tRCH	RESET\# to CMD valid	150		150		150		$\mu \mathrm{s}$	
tCHR	Chip-disable to RESET\# low	20		20		20		ns	

Table 16: DDR timing parameters

		-7(13	MHz)	-6/1	MHz)	-5(MHz)		
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	Notes
tCQLZ	Clock rising edge to DQS low	1	6	1	6	1	6	ns	
tDQSCK	DQS output access time from CLK	2	5.5	2	5.5	2	5.5	ns	
tDQSQ	DQS - DQ skew		0.6		0.5		0.4	ns	
tDS	DQ and DM input setup time	0.8		0.7		0.6		ns	
tDH	DQ and DM input hold time	0.8		0.7		0.6		ns	
tHP	Half Period	$=\min (\mathrm{tCH}, \mathrm{tCL})$						ns	
tQHS	Datahold skew factor		0.75		0.6		0.5	ns	
tQH	DQ output hold time from DQS	= tHP - tQHS						ns	

9 Change Log

Version	Date	Description
0.5	Dec 18, 2015	Initial Release
0.6	Jan 14, 2016	Instruction bit [7] flip; added Continuous, Deep Power Down, DQS Skew, expanded WL, tCEM
0.7	Jan 15, 2016	Updated write latency table
0.8	Feb 16, 2016	Changes to match MXIC Specs
0.9	Mar 09, 2016	Correction to KGD polarity; updated tCPH; flipped DQS Pre-Cyc definition; shuffled ID Register
1.0	Apr 01, 2016	Added tCHD
1.1	Jul 15, 2016	Changed tHZ; added VL pushout waveform; added junk data to read waveforms; changed tCPH definition
1.2	Sep 28, 2016	Added cover page
1.3	Dec 21, 2016	Renamed Continuous Burst to Linear, lowered tCPH, correction to latency start in drawings; added 64Byte Burst Length command; Added DQS low pulse during command/address
1.4	May 04, 2017	Changed RESET\# spec and powerup usage; Temperature range correction; Reworded burst table for clarity
1.5	Oct 08, 2019	Removed DQS Pre \& PASR, added tRCH to table; 4 byte write to 2 byte; Updated tSP/tHD, tCEM, ISB \#s; LC usage unification
1.51	Jan 22, 2019	Update POD of 24ball; Absolute Maximum Ratings and Package Pin Cap value
1.6	Jan 24, 2019	Removed 64Byte Burst command; Fixed MRR waveform; Corrected address A1 mapping; Updated default latency code. Added Decap section
1.61	Apr 03, 2019	Added HS mode; modified C Load; Added ISBstddpd=10uA max; noted Typical ISBSTDDPD 3uA
1.7	Aug 21, 2019	Updated Page 1; Revised Section 6 and Table 15; Noted Table 8; Updated Figure 12
1.8	Sep 28, 2019	Update header, footer and page 1; updated ICC in Table 14
1.8a	Jan 15, 2020	Updated Table of Contents, footer, section 4, Figure 19 and tHS min $^{\text {in }}$ Table 15
1.9	Jan 22, 2020	Added Clocking optional in Figure 16, Figure 17and Figure 19

